Abstract
1. The Rall model of the motoneurone, which consists of a lumped resistance and capacitance, representing the soma, in parallel with a distributed resistance—capacitance network of finite length, representing the equivalent dendritic cable, has been used to investigate the effects of varying electrical and geometrical parameters on the time course of transients generated at the model soma.
2. An analytical solution has been obtained for the voltage at the model soma, following a brief current injection at any point on the dendritic cable, in terms of the dendritic to soma conductance ratio, the electrotonic length of the cable, the membrane time constant, and the electrotonic distance between the point of current injection and the soma. This solution has been used to study the response at the soma to currents with a smooth time course, and to brief rectangular current pulses. Computations of these voltage transients are given to illustrate the effect of the above parameters on voltage time course.
3. A method for determining the membrane time constant, the dendritic to soma conductance ratio, and the electrotonic length of the dendritic cable, is described. The method involves measurements from the decay time course of the transient at the soma following a brief current pulse being applied at the soma.
4. A method is described whereby the time course of a synaptic potential, assumed to be generated by synaptic knobs located exclusively at the soma, may be used to determine the motoneurone parameters, and a parameter describing the time course of current injection.
5. A method for estimating the distance between soma and origin of a non-somatic synaptic potential, once the parameters of the motoneurone are known, is described.
Full text
PDF































Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burke R. E. Group Ia synaptic input to fast and slow twitch motor units of cat triceps surae. J Physiol. 1968 Jun;196(3):605–630. doi: 10.1113/jphysiol.1968.sp008526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COOMBS J. S., CURTIS D. R., ECCLES J. C. The electrical constants of the motoneurone membrane. J Physiol. 1959 Mar 12;145(3):505–528. doi: 10.1113/jphysiol.1959.sp006158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COOMBS J. S., CURTIS D. R., ECCLES J. C. Time courses of motoneuronal responses. Nature. 1956 Nov 10;178(4541):1049–1050. doi: 10.1038/1781049a0. [DOI] [PubMed] [Google Scholar]
- ECCLES J. C. Membrane time constants of cat motoneurons and time courses of synptic action. Exp Neurol. 1961 Jul;4:1–22. doi: 10.1016/0014-4886(61)90074-7. [DOI] [PubMed] [Google Scholar]
- Eisenberg R. S., Engel E. The spatial variation of membrane potential near a small source of current in a spherical cell. J Gen Physiol. 1970 Jun;55(6):736–757. doi: 10.1085/jgp.55.6.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P. Sequence of events in synaptic activation of a motoneurone. J Neurophysiol. 1957 Jan;20(1):61–80. doi: 10.1152/jn.1957.20.1.61. [DOI] [PubMed] [Google Scholar]
- Fein H. Passing current through recording glass micro-pipette electrodes. IEEE Trans Biomed Eng. 1966 Oct;13(4):211–212. [PubMed] [Google Scholar]
- Hellerstein D. Passive membrane potentials: a generalization of the theory of electrotonus. Biophys J. 1968 Mar;8(3):358–379. doi: 10.1016/S0006-3495(68)86493-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jack J. J., Miller S., Porter R., Redman S. J. The time course of minimal excitory post-synaptic potentials evoked in spinal motoneurones by group Ia afferent fibres. J Physiol. 1971 Jun;215(2):353–380. doi: 10.1113/jphysiol.1971.sp009474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jack J. J., Redman S. J. The propagation of transient potentials in some linear cable structures. J Physiol. 1971 Jun;215(2):283–320. doi: 10.1113/jphysiol.1971.sp009472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ B., MILEDI R. A STUDY OF SPONTANEOUS MINIATURE POTENTIALS IN SPINAL MOTONEURONES. J Physiol. 1963 Sep;168:389–422. doi: 10.1113/jphysiol.1963.sp007199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lux H. D., Pollen D. A. Electrical constants of neurons in the motor cortex of the cat. J Neurophysiol. 1966 Mar;29(2):207–220. doi: 10.1152/jn.1966.29.2.207. [DOI] [PubMed] [Google Scholar]
- RALL W. Electrophysiology of a dendritic neuron model. Biophys J. 1962 Mar;2(2 Pt 2):145–167. doi: 10.1016/s0006-3495(62)86953-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rall W., Burke R. E., Smith T. G., Nelson P. G., Frank K. Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J Neurophysiol. 1967 Sep;30(5):1169–1193. doi: 10.1152/jn.1967.30.5.1169. [DOI] [PubMed] [Google Scholar]
- Rall W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol. 1967 Sep;30(5):1138–1168. doi: 10.1152/jn.1967.30.5.1138. [DOI] [PubMed] [Google Scholar]
- Rall W. Time constants and electrotonic length of membrane cylinders and neurons. Biophys J. 1969 Dec;9(12):1483–1508. doi: 10.1016/S0006-3495(69)86467-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sterling P., Kuypers H. G. Anatomical organization of the brachial spinal cord of the cat. I. The distribution of dorsal root fibers. Brain Res. 1967 Feb;4(1):1–15. doi: 10.1016/0006-8993(67)90144-8. [DOI] [PubMed] [Google Scholar]
- Takahashi K. Slow and fast groups of pyramidal tract cells and their respective membrane properties. J Neurophysiol. 1965 Sep;28(5):908–924. doi: 10.1152/jn.1965.28.5.908. [DOI] [PubMed] [Google Scholar]