Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1971 Jun;215(2):539–555. doi: 10.1113/jphysiol.1971.sp009484

Effects of CO2 on transmembrane potentials of rat liver and muscle in vivo*

J A Williams, C D Withrow, D M Woodbury
PMCID: PMC1331898  PMID: 5145731

Abstract

1. The effects of increasing the inspired CO2 concentration on the transmembrane resting potential (RP), intracellular electrolytes, and cell pH of rat liver and muscle were studied.

2. Elevation of CO2 produced a rapid reversible fall in hepatic RP. This effect is mediated by a decrease in plasma pH and is in part due to hypoxia.

3. The decrease in hepatic RP could not be accounted for by shifts in electrolytes, and an effect on membrane permeability is suggested.

4. The hepatic RP was also found to be decreased by hypoxia and increased by hyperoxia.

5. Muscle RP showed no immediate change in response to CO2 but after 60 min there was significant depolarization. This effect could be accounted for on the basis of electrolyte shifts between cells and plasma, by use of the Goldman equation.

6. Cell pH data showed that liver is buffered approximately threefold more than skeletal muscle.

7. While intracellular pH fell in response to CO2 the H+ gradient remained constant in muscle and increased in liver.

Full text

PDF
539

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN E. B., Jr Role of hyperkalemia in production of ventricular fibrillation following hypercapnia. Proc Soc Exp Biol Med. 1955 Nov;90(2):319–323. doi: 10.3181/00379727-90-22021. [DOI] [PubMed] [Google Scholar]
  2. CORABOEUF E., BEIGELMAN P. M., BRETON D. POTENTIELS 'ELECTRIQUES DU FOIE DE RAT IN SITU. EFFETS DE L'ASPHYXIE. C R Hebd Seances Acad Sci. 1964 Oct 5;259:2300–2302. [PubMed] [Google Scholar]
  3. Claret M., Coraboeuf E. Effets de variations du pH sur la polarisation membranaire du foie de rat isolé et perfusé. C R Acad Sci Hebd Seances Acad Sci D. 1968 Aug 5;267(6):642–645. [PubMed] [Google Scholar]
  4. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hagiwara S., Gruener R., Hayashi H., Sakata H., Grinnell A. D. Effect of external and internal pH changes on K and Cl conductances in the muscle fiber membrane of a giant barnacle. J Gen Physiol. 1968 Nov;52(5):773–792. doi: 10.1085/jgp.52.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hutter O. F., Warner A. E. The pH sensitivity of the chloride conductance of frog skeletal muscle. J Physiol. 1967 Apr;189(3):403–425. doi: 10.1113/jphysiol.1967.sp008176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KERKUT G. A., THOMAS R. C. AN ELECTROGENIC SODIUM PUMP IN SNAIL NERVE CELLS. Comp Biochem Physiol. 1965 Jan;14:167–183. doi: 10.1016/0010-406x(65)90017-4. [DOI] [PubMed] [Google Scholar]
  8. KERNAN R. P. Membrane potential changes during sodium transport in frog sartorius muscle. Nature. 1962 Mar 10;193:986–987. doi: 10.1038/193986a0. [DOI] [PubMed] [Google Scholar]
  9. KEYNES R. D. SOME FURTHER OBSERVATIONS ON THE SODIUM EFFLUX IN FROG MUSCLE. J Physiol. 1965 May;178:305–325. doi: 10.1113/jphysiol.1965.sp007629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MULLINS L. J., AWAD M. Z. THE CONTROL OF THE MEMBRANE POTENTIAL OF MUSCLE FIBERS BY THE SODIUM PUMP. J Gen Physiol. 1965 May;48:761–775. doi: 10.1085/jgp.48.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mainwood G. W., Lee S. L. The hyperpolarizing effect of hydrogen ions on transmembrane potential in frog skeletal muscle. Can J Physiol Pharmacol. 1968 Mar;46(2):151–157. doi: 10.1139/y68-025. [DOI] [PubMed] [Google Scholar]
  12. SCRIBNER B. H., FREMONT-SMITH K., BURNELL J. M. The effect of acute respiratory acidosis on the internal equilibrium of potassium. J Clin Invest. 1955 Aug;34(8):1276–1285. doi: 10.1172/JCI103174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
  14. Schanne O., Coraboeuf E. Potential and resistance measurements of rat liver cells in situ. Nature. 1966 Jun 25;210(5043):1390–1391. doi: 10.1038/2101390a0. [DOI] [PubMed] [Google Scholar]
  15. Sokoll M. D., Thesleff S. Effects of pH and uranyl ions on action potential generation and acetylcholine sensitivity of skeletal muscle. Eur J Pharmacol. 1968 Aug;4(1):71–76. doi: 10.1016/0014-2999(68)90011-3. [DOI] [PubMed] [Google Scholar]
  16. WADDELL W. J., BUTLER T. C. Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO); application to skeletal muscle of the dog. J Clin Invest. 1959 May;38(5):720–729. doi: 10.1172/JCI103852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Williams J. A., Withrow C. D., Woodbury D. M. Effects of ouabain and diphenylhydantoin on transmembrane potentials, intracellular electrolytes, and cell pH of rat muscle and liver in vivo. J Physiol. 1971 Jan;212(1):101–115. doi: 10.1113/jphysiol.1971.sp009312. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES