Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1974 Mar;14(3):200–208. doi: 10.1016/S0006-3495(74)85907-2

Phospholipid Flip-Flop and the Distribution of Surface Charges in Excitable Membranes

Stuart McLaughlin, Howard Harary
PMCID: PMC1334495  PMID: 4823459

Abstract

There is now good evidence that most of the lipids in a biological membrane are arranged in the form of a bilayer. Charged lipids in the membrane of an excitable cell are subject to a significant driving force, the gradient of the intramembrane potential, which will tend to redistribute the lipids between the two halves of the bilayer by a “phospholipid flip-flop” mechanism. We have calculated, by combining the Boltzmann relation from statistics and the Gouy equation from the theory of the diffuse double layer, the steady-state distribution of charged lipids in the bilayer. This distribution is completely determined, within the framework of the model, by three experimentally accessible variables; the percentage of charged lipid in the bilayer as a whole, the resting potential and the ionic strength. The known values for the percentage of anionic phospholipids in squid axons (10-15%), the membrane potential (50-100 mV) and ionic strength (0.5 M) imply that the charge density and double layer potential at the outer surface of the nerve will be substantially greater than the charge density and double layer potential at the inner surface, in agreement with the best available evidence from physiological measurements.

Full text

PDF
200

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Camejo G., Villegas G. M., Barnola F. V., Villegas R. Characterization of two different membrane fractions isolated from the first stellar nerves of the squid Dosidicus gigas. Biochim Biophys Acta. 1969;193(2):247–259. doi: 10.1016/0005-2736(69)90186-2. [DOI] [PubMed] [Google Scholar]
  2. Chacko G. K., Goldman D. E., Pennock B. E. Composition and characterization of the lipids of garfish (Lepisosteus osseus) olfactory nerve, a tissue rich in axonal membrane. Biochim Biophys Acta. 1972 Sep 7;280(1):1–16. doi: 10.1016/0005-2760(72)90207-x. [DOI] [PubMed] [Google Scholar]
  3. Haydon D. A., Myers V. B. Surface charge, surface dipoles and membrane conductance. Biochim Biophys Acta. 1973 May 25;307(3):429–443. doi: 10.1016/0005-2736(73)90289-7. [DOI] [PubMed] [Google Scholar]
  4. Jost P., Griffith O. H., Capaldi R. A., Vanderkooi G. Identification and extent of fluid bilayer regions in membranous cytochrome oxidase. Biochim Biophys Acta. 1973 Jun 22;311(2):141–152. doi: 10.1016/0005-2736(73)90261-7. [DOI] [PubMed] [Google Scholar]
  5. McLaughlin S. G., Szabo G., Eisenman G., Ciani S. M. Surface charge and the conductance of phospholipid membranes. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1268–1275. doi: 10.1073/pnas.67.3.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. McLaughlin S. G., Szabo G., Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol. 1971 Dec;58(6):667–687. doi: 10.1085/jgp.58.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  8. Stoeckenius W., Engelman D. M. Current models for the structure of biological membranes. J Cell Biol. 1969 Sep;42(3):613–646. doi: 10.1083/jcb.42.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Walz D., Bamberg E., Läuger P. Nonlinear electrical effects in lipid bilayer membranes. I. Ion injection. Biophys J. 1969 Sep;9(9):1150–1159. doi: 10.1016/S0006-3495(69)86442-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES