Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1974 Apr;14(4):269–283. doi: 10.1016/S0006-3495(74)85915-1

Probing Photosynthesis on a Picosecond Time Scale

Evidence for Photosystem I and Photosystem II Fluorescence in Chloroplasts

Michael Seibert, Robert R Alfano
PMCID: PMC1334507  PMID: 4830466

Abstract

Fluorescent emission kinetics of isolated spinach chloroplasts have been observed at room temperature with an instrument resolution time of 10 ps using a frequency doubled, mode-locked Nd:glass laser and an optical Kerr gate. At 685 nm two maxima are apparent in the time dependency of the fluorescence; the first occurs at 15 ps and the second at 90 ps after the flash. The intervening minimum occurs at about 50 ps. On the basis of theoretical models, lifetimes of the components associated with the two peaks and spectra (in escarole chloroplasts), the fluorescence associated with the first peak is interpreted as originating from Photosystem I (PSI) (risetime ≤10 ps, lifetime ≤10 ps) and the second peak from Photosystem II (PSII) (lifetime, 210 ps in spinach chloroplasts and 320 ps in escarole chloroplasts). The fact that there are two fluorescing components with a quantum yield ratio ≤0.048 explains the previous discrepancy between the quantum yield of fluorescence measured in chloroplasts directly and that calculated from the lifetime of PSII. The 90 ps delay in the peak of PSII fluorescence is probably explained by energy transfer between accessory pigments such as carotenoids and Chl a. Energy spillover between PSI and PSII is not apparent during the time of observation. The results of this work support the view that the transfer of excitation energy to the trap complex in both photosystems occurs by means of a molecular excitation mechanism of intermediate coupling strength. Although triplet states are not of major importance in energy transfer to PSII traps, the possibility that they are involved in PSI photochemistry has not been eliminated.

Full text

PDF
269

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVRON M. Photophosphorylation as a tool for the synthesis of specifically labeled nucleotides. Anal Biochem. 1961 Dec;2:535–543. doi: 10.1016/0003-2697(61)90021-5. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BAY Z., PEARLSTEIN R. M. A THEORY OF ENERGY TRANSFER IN THE PHOTOSYNTHETIC UNIT. Proc Natl Acad Sci U S A. 1963 Dec;50:1071–1078. doi: 10.1073/pnas.50.6.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BUTLER W. L., NORRIS K. H. Lifetime of the long-wavelength chlorophyll fluorescence. Biochim Biophys Acta. 1963 Jan 15;66:72–77. doi: 10.1016/0006-3002(63)91168-5. [DOI] [PubMed] [Google Scholar]
  5. Blaurock A. E., Worthington C. R. Treatment of low angle x-ray data from planar and concentric multilayered structures. Biophys J. 1966 May;6(3):305–312. doi: 10.1016/S0006-3495(66)86658-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cramer W. A., Butler W. L. Light-induced absorbance changes of two cytochrome b components in the electron-transport system of spinach chloroplasts. Biochim Biophys Acta. 1967 Sep 6;143(2):332–339. doi: 10.1016/0005-2728(67)90087-4. [DOI] [PubMed] [Google Scholar]
  7. Dutton P. L., Leight J. S., Seibert M. Primary processes in photosynthesis: in situ ESR studies on the light induced oxidized and triplet state of reaction center bacteriochlorophyll. Biochem Biophys Res Commun. 1972 Jan 31;46(2):406–413. doi: 10.1016/s0006-291x(72)80153-0. [DOI] [PubMed] [Google Scholar]
  8. Lesslauer W., Blasie J. K. Direct determination of the structure of barium stearate multilayers by x-ray diffraction. Biophys J. 1972 Feb;12(2):175–190. doi: 10.1016/S0006-3495(72)86078-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lesslauer W., Cain J., Blasie J. K. On the location of I-anilino-8-naphthalene-sulfonate in lipid model systems. An x-ray diffraction study. Biochim Biophys Acta. 1971 Aug 13;241(2):547–566. doi: 10.1016/0005-2736(71)90054-x. [DOI] [PubMed] [Google Scholar]
  10. Mar T., Govindjee, Singhal G. S., Merkelo H. Lifetime of the excited state in vivo. I. Chlorophyll a in algae, at room and at liquid nitrogen temperatures; rate constants of radiationless deactivation and trapping. Biophys J. 1972 Jul;12(7):797–808. doi: 10.1016/S0006-3495(72)86123-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Merkelo H., Hartman S. R., Mar T., Govindjee G. S. Mode-locked lasers: measurements of very fast radiative decay in fluorescent systems. Science. 1969 Apr 18;164(3877):301–302. doi: 10.1126/science.164.3877.301. [DOI] [PubMed] [Google Scholar]
  12. Murty N. R., Rabinowitch E. Fluorescence decay studies of chlorophyll A in vivo. Biophys J. 1965 Sep;5(5):655–661. doi: 10.1016/S0006-3495(65)86743-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Müller A., Lumry R., Walker M. S. Light-intensity dependence of the in vivo fluorescence lifetime of chlorophyll. Photochem Photobiol. 1969 Feb;9(2):113–126. doi: 10.1111/j.1751-1097.1969.tb05916.x. [DOI] [PubMed] [Google Scholar]
  14. Netzel T. L., Rentzepis P. M., Leigh J. Picosecond kinetics of reaction centers containing bacteriochlorophyll. Science. 1973 Oct 19;182(4109):238–241. doi: 10.1126/science.182.4109.238. [DOI] [PubMed] [Google Scholar]
  15. Nicholson W. J., Fortoul J. I. Measurement of the fluorescent lifetimes of chlorella and porphyridium in weak light. Biochim Biophys Acta. 1967;143(3):577–582. doi: 10.1016/0005-2728(67)90063-1. [DOI] [PubMed] [Google Scholar]
  16. RUBIN A. B., OSNITSKAIA L. K. [On relations between the physiological state and the average length of fluorescence of bacteriochlorophyll in the cells of photosynthesizing bacteria]. Mikrobiologiia. 1963 Mar-Apr;32:200–203. [PubMed] [Google Scholar]
  17. Robinson G. W. Excitation transfer and trapping in photosynthesis. Brookhaven Symp Biol. 1966;19:16–48. [PubMed] [Google Scholar]
  18. Seibert M., Alfano R. R., Shapiro S. L. Picosecond fluorescent kinetics of in vivo chlorophyll. Biochim Biophys Acta. 1973 Feb 22;292(2):493–495. doi: 10.1016/0005-2728(73)90054-6. [DOI] [PubMed] [Google Scholar]
  19. Seibert M., DeVault D. Photosynthetic reaction center transients, P435 and P424, in Chromatium D. Biochim Biophys Acta. 1971 Dec 7;253(2):396–411. doi: 10.1016/0005-2728(71)90043-0. [DOI] [PubMed] [Google Scholar]
  20. Singhal G. S., Rabinowitch E. Measurement of the fluorescence lifetime of chlorophyll a in vivo. Biophys J. 1969 Apr;9(4):586–591. doi: 10.1016/S0006-3495(69)86405-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. TOMITA G., RABINOWITCH E. Excitation energy transfer between pigments in photosynthetic cells. Biophys J. 1962 Nov;2:483–499. doi: 10.1016/s0006-3495(62)86869-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. TUMERMAN L. A., BORISOVA O. F., RUBIN A. B. Link between photosynthetic activity and luminescence of chlorophyll. Biofizika. 1961;6:723–728. [PubMed] [Google Scholar]
  23. VREDENBERG W. J., DUYSENS L. N. Transfer of energy from bacteriochlorophyll to a reaction centre during bacterial photosynthesis. Nature. 1963 Jan 26;197:355–357. doi: 10.1038/197355a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES