Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1974 Jul;14(7):528–545. doi: 10.1016/S0006-3495(74)85933-3

Studies of Ribosomal Diffusion Coefficients Using Laser Light-Scattering Spectroscopy

R Gabler, E W Westhead, N C Ford
PMCID: PMC1334516  PMID: 4209316

Abstract

Using an optical beating technique, the diffusion coefficients and relative scattered intensity of Escherichia coli 70S, 50S, and 30S ribosomes are measured as a function of temperature and Mg2+ concentration. For solutions at 10 mM Mg2+ and between 0°C and about 40°C, the values of D20,w obtained are 1.7, 1.9, and ≈2.1 × 10-7 cm2/s, respectively. Preparative procedures drastically affect these values and equivalent hydrodynamic ellipsoids of revolution models give large axial ratios indicating extensive hydration or a deviation from the assumed shape. Calculations also indicate that the subunits expand upon dissociation. Measurements of D20,w vs. temperature indicate that 70S particles undergo a conformational change prior to dissociation and can be heat dissociated at 30-32°C at low concentrations. Treatment of 70S ribosomes with EDTA causes a biphasic dissociation reaction. Addition of Mg2+ after dissociation with EDTA shows that longer waiting times yield fewer 70S particles and that even short waiting times may yield ribosomes differing from the native conformation. Addition of p-chloromercuribenzoic acid (PCMB) is shown to dissociate 70S particles, but to a lesser extent than ethylenediaminetetraacetic acid (EDTA).

Full text

PDF
528

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya A. S., Moore P. B. Reaction of ribosomal sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoic acid). J Mol Biol. 1973 May 15;76(2):207–221. doi: 10.1016/0022-2836(73)90385-9. [DOI] [PubMed] [Google Scholar]
  2. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gesteland R. F. Unfolding of Escherichia coli ribosomes by removal of magnesium. J Mol Biol. 1966 Jul;18(2):356–371. doi: 10.1016/s0022-2836(66)80253-x. [DOI] [PubMed] [Google Scholar]
  4. HART R. G. Electron microscopy of the 50-S ribosomes of Escherichia coli. Biochim Biophys Acta. 1962 Jul 16;60:629–637. doi: 10.1016/0006-3002(62)90881-8. [DOI] [PubMed] [Google Scholar]
  5. Hill W. E., Anderegg J. W., Van Holde K. E. Effects of solvent environment and mode of preparation on the physical properties of ribosomes fron Escherichia coli. J Mol Biol. 1970 Oct 14;53(1):107–121. doi: 10.1016/0022-2836(70)90048-3. [DOI] [PubMed] [Google Scholar]
  6. Hill W. E., Rossetti G. P., Van Holde K. E. Physical studies of ribosomes from Escherichia coli. J Mol Biol. 1969 Sep 14;44(2):263–277. doi: 10.1016/0022-2836(69)90174-0. [DOI] [PubMed] [Google Scholar]
  7. Hill W. E., Thompson J. D., Anderegg J. W. X-ray scattering study of ribosomes from Escherichia coli. J Mol Biol. 1969 Aug 28;44(1):89–102. doi: 10.1016/0022-2836(69)90406-9. [DOI] [PubMed] [Google Scholar]
  8. Infante A. A., Baierlein R. Pressure-induced dissociation of sedimenting ribosomes: effect on sedimentation patterns. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1780–1785. doi: 10.1073/pnas.68.8.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lengyel P., Söll D. Mechanism of protein biosynthesis. Bacteriol Rev. 1969 Jun;33(2):264–301. doi: 10.1128/br.33.2.264-301.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Noll M., Hapke B., Schreier M. H., Noll H. Structural dynamics of bacterial ribosomes. I. Characterization of vacant couples and their relation to complexed ribosomes. J Mol Biol. 1973 Apr 5;75(2):281–294. doi: 10.1016/0022-2836(73)90021-1. [DOI] [PubMed] [Google Scholar]
  11. Nomura M. Bacterial ribosome. Bacteriol Rev. 1970 Sep;34(3):228–277. doi: 10.1128/br.34.3.228-277.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Scafati A. R., Stornaiuolo M. R., Novaro P. Physicochemical and light scattering studies on ribosome particles. Biophys J. 1971 Apr;11(4):370–384. doi: 10.1016/S0006-3495(71)86221-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tal M. Thermal denaturation of ribosomes. Biochemistry. 1969 Jan;8(1):424–435. doi: 10.1021/bi00829a058. [DOI] [PubMed] [Google Scholar]
  14. Tamaoki T., Miyazawa F. Dissociation of ribosomes at high temperatures. J Mol Biol. 1966 Jun;17(2):537–540. doi: 10.1016/s0022-2836(66)80164-x. [DOI] [PubMed] [Google Scholar]
  15. Vournakis J., Rich A. Size changes in eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3021–3025. doi: 10.1073/pnas.68.12.3021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WATSON J. D. THE SYNTHESIS OF PROTEINS UPON RIBOSOMES. Bull Soc Chim Biol (Paris) 1964;46:1399–1425. [PubMed] [Google Scholar]
  17. Zitomer R. S., Flaks J. G. Magnesium dependence and equilibrium of the Escherichia coli ribosomal subunit association. J Mol Biol. 1972 Nov 14;71(2):263–279. doi: 10.1016/0022-2836(72)90350-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES