Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1974 May;14(5):343–362. doi: 10.1016/S0006-3495(74)85921-7

Dynamic Local Distensibility of Living Arteries and its Relation to Wave Transmission

Jan Baan, Jan P Szidon, Abraham Noordergraaf
PMCID: PMC1334545  PMID: 4836035

Abstract

The dynamic local distensibility of the abdominal aorta was measured in 11 anesthetized dogs by recording simultaneously phasic pressure and instantaneous intravascular cross-sectional area, utilizing a special transducer. Axial motion of the vessel wall was recorded using a modification of the same transducer. A nonlinear relationship was found to exist between area and pressure in most cases studied. Fourier analysis was performed on data from eight experiments in order to obtain frequency characteristics of distensibility. In roughly half of the cases, Fourier analysis revealed that pressure variations displayed a phase lead over area variations for frequencies up to 10 Hz. This phenomenon was ascribed to viscoelastic properties of the vessel wall and the magnitude of the phase leads roughly matched those found in vitro by others. The behavior of the vessel wall in these instances was correctly predicted by the dynamic formula for distensibility, derived by others from wave transmission theory in which absence of axial wall motion is assumed. In these experiments, axial motion of the wall was found to be virtually absent. In the other half of the cases, the reverse situation was obtained: a phase lead of area variations over pressure variations for frequencies up to 15 Hz. In those cases a craniocaudal axial displacement of the vessel wall was observed with each systole, amounting to around 1 mm. The finding of the phase leads was partially explained by a dynamic formula for distensibility, developed by us from the theory of wave transmission in which free axial motion of the wall is a chosen boundary condition. The sign and order of magnitude of the phase leads were correctly predicted by the theoretical formula, but there was a disagreement on the frequency range in which they occurred. We concluded that additional forces, not yet considered in theoretical treatments, are operative on the aortic wall, which account for this lack of agreement. The frequency dependent properties of distensibility in vivo cannot be compared to those obtained in vitro in those cases in which there is axial displacement of the vessel wall of the same order of magnitude as the radial extensions.

Full text

PDF
343

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arndt J. O., Klauske J., Mersch F. The diameter of the intact carotid artery in man and its change with pulse pressure. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;301(3):230–240. doi: 10.1007/BF00363770. [DOI] [PubMed] [Google Scholar]
  2. Attinger E. O., Anné A., McDonald D. A. Use of Fourier series for the analysis of biological systems. Biophys J. 1966 May;6(3):291–304. doi: 10.1016/S0006-3495(66)86657-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Attinger E. O., Anné A. Simulation of the cardiovascular system. Ann N Y Acad Sci. 1966 Jan 31;128(3):810–829. doi: 10.1111/j.1749-6632.1965.tb11701.x. [DOI] [PubMed] [Google Scholar]
  4. BARNETT G. O., MALLOS A. J., SHAPIRO A. Relationship of aortic pressure and diameter in the dog. J Appl Physiol. 1961 May;16:545–548. doi: 10.1152/jappl.1961.16.3.545. [DOI] [PubMed] [Google Scholar]
  5. Baan J., Iwazumi T., Szidon J. P., Noordergraf A. Intravascular area transducer measuring dynamic local distensibility of the aorta. J Appl Physiol. 1971 Sep;31(3):499–503. doi: 10.1152/jappl.1971.31.3.499. [DOI] [PubMed] [Google Scholar]
  6. Bergel D. H. The dynamic elastic properties of the arterial wall. J Physiol. 1961 May;156(3):458–469. doi: 10.1113/jphysiol.1961.sp006687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bergel D. H. The static elastic properties of the arterial wall. J Physiol. 1961 May;156(3):445–457. doi: 10.1113/jphysiol.1961.sp006686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carew T. E., Vaishnav R. N., Patel D. J. Compressibility of the arterial wall. Circ Res. 1968 Jul;23(1):61–68. doi: 10.1161/01.res.23.1.61. [DOI] [PubMed] [Google Scholar]
  9. EVANS R. L., BERNSTEIN E. F., JOHNSON E., RELLER C. Mechanical properties of the living dog aorta. Am J Physiol. 1962 Apr;202:619–621. doi: 10.1152/ajplegacy.1962.202.4.619. [DOI] [PubMed] [Google Scholar]
  10. Gow B. S. An electrical caliper for measurement of pulsatile arterial diameter changes in vivo. J Appl Physiol. 1966 May;21(3):1122–1126. doi: 10.1152/jappl.1966.21.3.1122. [DOI] [PubMed] [Google Scholar]
  11. Gow B. S., Taylor M. G. Measurement of viscoelastic properties of arteries in the living dog. Circ Res. 1968 Jul;23(1):111–122. doi: 10.1161/01.res.23.1.111. [DOI] [PubMed] [Google Scholar]
  12. HARDUNG V. Vergleichende Messungen der dynamischen Elastizitat und Viskositat von Blutgefässen, Kautschuk und synthetischen Elastomeren. II. Helv Physiol Pharmacol Acta. 1953;11(2):194–211. [PubMed] [Google Scholar]
  13. JAGER G. N., WESTERHOF N., NOORDERGRAAF A. OSCILLATORY FLOW IMPEDANCE IN ELECTRICAL ANALOG OF ARTERIAL SYSTEM: REPRESENTATION OF SLEEVE EFFECT AND NON-NEWTONIAN PROPERTIES OF BLOOD. Circ Res. 1965 Feb;16:121–133. doi: 10.1161/01.res.16.2.121. [DOI] [PubMed] [Google Scholar]
  14. Kolin A., Culp G. W. An intra-arterial induction gauge. IEEE Trans Biomed Eng. 1971 Mar;18(2):110–114. doi: 10.1109/tbme.1971.4502811. [DOI] [PubMed] [Google Scholar]
  15. LAWTON R. W. Measurements on the elasticity and damping of isolated aortic strips of the dog. Circ Res. 1955 Jul;3(4):403–408. doi: 10.1161/01.res.3.4.403. [DOI] [PubMed] [Google Scholar]
  16. LUCHSINGER P. C., SACHS M., PATEL D. J. Pressure-radius relationship in large blood vessels of man. Circ Res. 1962 Nov;11:885–888. doi: 10.1161/01.res.11.5.885. [DOI] [PubMed] [Google Scholar]
  17. Learoyd B. M., Taylor M. G. Alterations with age in the viscoelastic properties of human arterial walls. Circ Res. 1966 Mar;18(3):278–292. doi: 10.1161/01.res.18.3.278. [DOI] [PubMed] [Google Scholar]
  18. MALLOS A. J. An electrical caliper for continuous measurement of relative displacement. J Appl Physiol. 1962 Jan;17:131–134. doi: 10.1152/jappl.1962.17.1.131. [DOI] [PubMed] [Google Scholar]
  19. Ox R. H. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube. Biophys J. 1968 Jun;8(6):691–709. doi: 10.1016/s0006-3495(68)86515-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PARRISH D., STRANDNESS D. E., Jr, BELL J. W. DYNAMIC RESPONSE CHARACTERISTICS OF A MERCURY-IN-SILASTIC STRAIN GAUGE. J Appl Physiol. 1964 Mar;19:363–365. doi: 10.1152/jappl.1964.19.2.363. [DOI] [PubMed] [Google Scholar]
  21. PATEL D. J., AUSTEN W. G., GREENFIELD J. C., Jr, TINDALL G. T. IMPEDANCE OF CERTAIN LARGE BLOOD VESSELS IN MAN. Ann N Y Acad Sci. 1964 Jul 31;115:1129–1139. [PubMed] [Google Scholar]
  22. PATEL D. J., MALLOS A. J., FRY D. L. Aortic mechanics in the living dog. J Appl Physiol. 1961 Mar;16:293–299. doi: 10.1152/jappl.1961.16.2.293. [DOI] [PubMed] [Google Scholar]
  23. PATEL D. J., SCHILDER D. P., MALLOS A. J. Mechanical properties and dimensions of the major pulmonary arteries. J Appl Physiol. 1960 Jan;15:92–96. doi: 10.1152/jappl.1960.15.1.92. [DOI] [PubMed] [Google Scholar]
  24. Patel D. J., Fry D. L. Longitudinal tethering of arteries in dogs. Circ Res. 1966 Dec;19(6):1011–1021. doi: 10.1161/01.res.19.6.1011. [DOI] [PubMed] [Google Scholar]
  25. Patel D. J., Janicki J. S., Carew T. E. Static anisotropic elastic properties of the aorta in living dogs. Circ Res. 1969 Dec;25(6):765–779. doi: 10.1161/01.res.25.6.765. [DOI] [PubMed] [Google Scholar]
  26. REMINGTON J. W. Pressure-diameter relations of the in vivo aorta. Am J Physiol. 1962 Sep;203:440–448. doi: 10.1152/ajplegacy.1962.203.3.440. [DOI] [PubMed] [Google Scholar]
  27. RUSHMER R. F. Pressure-circumference relations in the aorta. Am J Physiol. 1955 Dec;183(3):545–549. doi: 10.1152/ajplegacy.1955.183.3.545. [DOI] [PubMed] [Google Scholar]
  28. TAYLOR M. G. An experimental determination of the propagation of fluid oscillations in a tube with a visco-elastic wall; together with an analysis of the characteristics required in an electrical analogue. Phys Med Biol. 1959 Jul;4:63–82. doi: 10.1088/0031-9155/4/1/308. [DOI] [PubMed] [Google Scholar]
  29. Taylor M. G. Wave transmission through an assembly of randomly branching elastic tubes. Biophys J. 1966 Nov;6(6):697–716. doi: 10.1016/S0006-3495(66)86689-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. VAN CITTERS R. L., RUSHMER R. F. Longitudinal and radial strain in pulse wave transmission. Am J Physiol. 1961 Apr;200:732–734. doi: 10.1152/ajplegacy.1961.200.4.732. [DOI] [PubMed] [Google Scholar]
  31. WOMERSLEY J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol. 1955 Mar 28;127(3):553–563. doi: 10.1113/jphysiol.1955.sp005276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Westerhof N., Bosman F., De Vries C. J., Noordergraaf A. Analog studies of the human systemic arterial tree. J Biomech. 1969 May;2(2):121–143. doi: 10.1016/0021-9290(69)90024-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES