Abstract
New X-ray diffraction data from normal nerve and nerve swollen in glycerol solutions have been recorded. Direct methods of structure analysis have been used in the interpretation of the X-ray data, and the phases of the first five orders of diffraction of peripheral nerve myelin have been uniquely determined. The direct methods include deconvolution of the autocorrelation function, sampling theorem reconstructions, and Fourier synthesis comparisons. Electron density profiles of normal and swollen nerve myelin at a resolution of 17 Å together with an electron density scale in electrons per cubic angstrom are presented.
Full text
PDF























Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akers C. K., Parsons D. F. X-ray diffraction of myelin membrane. II. Determination of the phase angles of the frog sciatic nerve by heavy atom labeling and calculation of the electron density distribution of the membrane. Biophys J. 1970 Feb;10(2):116–136. doi: 10.1016/S0006-3495(70)86289-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BEN GEREN B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp Cell Res. 1954 Nov;7(2):558–562. doi: 10.1016/s0014-4827(54)80098-x. [DOI] [PubMed] [Google Scholar]
- Blaurock A. E., Worthington C. R. Treatment of low angle x-ray data from planar and concentric multilayered structures. Biophys J. 1966 May;6(3):305–312. doi: 10.1016/S0006-3495(66)86658-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELLIOTT G. F., WORTHINGTON C. R. A SMALL-ANGLE OPTICALLY FOCUSING X-RAY DIFFRACTION CAMERA IN BIOLOGICAL RESEARCH. I. J Ultrastruct Res. 1963 Aug;49:166–170. doi: 10.1016/s0022-5320(63)80044-1. [DOI] [PubMed] [Google Scholar]
- FINEAN J. B., BURGE R. E. THE DETERMINATION OF THE FOURIER TRANSFORM OF THE MYELIN LAYER FROM A STUDY OF SWELLING PHENOMENA. J Mol Biol. 1963 Dec;7:672–682. doi: 10.1016/s0022-2836(63)80115-1. [DOI] [PubMed] [Google Scholar]
- FINEAN J. B., MILLINGTON P. F. Effects of ionic strength of immersion medium on the structure of peripheral nerve myelin. J Biophys Biochem Cytol. 1957 Jan 25;3(1):89–94. doi: 10.1083/jcb.3.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harker D. Myelin membrane structure as revealed by x-ray diffraction. Biophys J. 1972 Oct;12(10):1285–1295. doi: 10.1016/S0006-3495(72)86162-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOODY M. F. X-RAY DIFFRACTION PATTERN OF NERVE MYELIN: A METHOD FOR DETERMINING THE PHASES. Science. 1963 Nov 29;142(3596):1173–1174. doi: 10.1126/science.142.3596.1173. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Worthington C. R. The choice between the positive and negative structures for nerve myelin. Biophys J. 1973 May;13(5):498–500. doi: 10.1016/S0006-3495(73)86003-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worthington C. R., Blaurock A. E. A structural analysis of nerve myelin. Biophys J. 1969 Jul;9(7):970–990. doi: 10.1016/S0006-3495(69)86431-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worthington C. R., McIntosh T. J. Direct determination of the electron density profile of nerve myelin. Nat New Biol. 1973 Sep 26;245(143):97–99. doi: 10.1038/newbio245097a0. [DOI] [PubMed] [Google Scholar]
- Worthington C. R. On the interpretation of x-ray diffraction intensities from chemically treated from sciatic nerve. Biophys J. 1970 Jul;10(7):675–677. doi: 10.1016/S0006-3495(70)86328-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worthington C. R. Structural parameters of nerve myelin. Proc Natl Acad Sci U S A. 1969 Jul;63(3):604–611. doi: 10.1073/pnas.63.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worthington C. R. The interpretation of low-angle X-ray data from planar and concentric multilayered structures. The use of one-dimensional electron density strip models. Biophys J. 1969 Feb;9(2):222–234. doi: 10.1016/S0006-3495(69)86381-2. [DOI] [PMC free article] [PubMed] [Google Scholar]



