Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1974 Aug;14(8):583–606. doi: 10.1016/S0006-3495(74)85937-0

Nuclear Magnetic Resonance Transverse Relaxation Times of Water Protons in Skeletal Muscle

Carlton F Hazlewood, Donald C Chang, Buford L Nichols, Donald E Woessner
PMCID: PMC1334554  PMID: 4853385

Abstract

The observation of the spin-echo decay in a long time domain has revealed that there exist at least three different fractions of non- (or slowly) exchanging water in the rat gastrocnemius muscle. These fractions of water are characterized with different nuclear magnetic resonance (NMR) relaxation times and are identified with the different parts of tissue water. The water associated with the macromolecules was found to be approximately 8% of the total tissue water and not to exchange rapidly with the rest of the intracellular water. The transverse relaxation time (T2) of the myoplasm is 45 ms which is roughly a 40-fold reduction from that of a dilute electrolyte solution. This fraction of water accounts for 82% of the tissue water. The reduced relaxation time is shown neither to be caused by fast exchange between the hydration and myoplasmic water nor by the diffusion of water across the local magnetic field gradients which arise from the heterogeneity in the sample. About 10% of the tissue water was resolved to be associated with the extracellular space, the relaxation time of which is approximately four times that of the myoplasm. Mathematical treatments of the proposed mechanisms which may be responsible for the reduction of tissue water relaxation times are given in this paper. The results of our study are consistent with the notion that the structure and/or motions of all or part of the cellular water are affected by the macromolecular interface and this causes a change in the NMR relaxation rates.

Full text

PDF
583

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRATTON C. B., HOPKINS A. L., WEINBERG J. W. NUCLEAR MAGNETIC RESONANCE STUDIES OF LIVING MUSCLE. Science. 1965 Feb 12;147(3659):738–739. doi: 10.1126/science.147.3659.738. [DOI] [PubMed] [Google Scholar]
  2. Belton P. S., Jackson R. R., Packer K. J. Pulsed NMR studies of water in striated muscle. I. Transverse nuclear spin relaxation times and freezing effects. Biochim Biophys Acta. 1972 Nov 24;286(1):16–25. doi: 10.1016/0304-4165(72)90084-0. [DOI] [PubMed] [Google Scholar]
  3. Boyle P. J., Conway E. J., Kane F., O'reilly H. L. Volume of interfibre spaces in frog muscle and the calculation of concentrations in the fibre water. J Physiol. 1941 Jun 30;99(4):401–414. doi: 10.1113/jphysiol.1941.sp003911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang D. C., Rorschach H. E., Nichols B. L., Hazlewood C. F. Implications of diffusion coefficient measurements for the structure of cellular water. Ann N Y Acad Sci. 1973 Mar 30;204:434–443. doi: 10.1111/j.1749-6632.1973.tb30796.x. [DOI] [PubMed] [Google Scholar]
  5. Civan M. M., Shporer M. 17 O nuclear magnetic resonance spectrum of H 2 17 O in frog striated muscle. Biophys J. 1972 Apr;12(4):404–413. doi: 10.1016/S0006-3495(72)86092-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooke R., Wien R. Nuclear magnetic resonance studies of intracellular water protons. Ann N Y Acad Sci. 1973 Mar 30;204:197–209. doi: 10.1111/j.1749-6632.1973.tb30780.x. [DOI] [PubMed] [Google Scholar]
  7. Cooke R., Wien R. The state of water in muscle tissue as determined by proton nuclear magnetic resonance. Biophys J. 1971 Dec;11(12):1002–1017. doi: 10.1016/S0006-3495(71)86274-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cope F. W. Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain. Biophys J. 1969 Mar;9(3):303–319. doi: 10.1016/S0006-3495(69)86388-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Damadian R., Goldsmith M., Zaner K. S. Biological ion exchanger resins. II. QUERP water and ion exchange selectivity. Biophys J. 1971 Sep;11(9):761–772. doi: 10.1016/S0006-3495(71)86252-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dehl R. E. Collagen: mobile water content of frozen fibers. Science. 1970 Nov 13;170(3959):738–739. doi: 10.1126/science.170.3959.738. [DOI] [PubMed] [Google Scholar]
  11. Dehl R. E., Hoeve C. A. Broad-line NMR study of H2O and D2O in collagen fibers. J Chem Phys. 1969 Apr 15;50(8):3245–3251. doi: 10.1063/1.1671547. [DOI] [PubMed] [Google Scholar]
  12. Finch E. D., Harmon J. F., Muller B. H. Pulsed NMR measurements of the diffusion constant of water in muscle. Arch Biochem Biophys. 1971 Nov;147(1):299–310. doi: 10.1016/0003-9861(71)90337-7. [DOI] [PubMed] [Google Scholar]
  13. Fritz O. G., Jr, Swift T. J. The state of water in polarized and depolarized frog nerves a proton magnetic resonance study. Biophys J. 2008 Dec 31;7(6):675–687. doi: 10.1016/S0006-3495(67)86616-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hansen J. R., Lawson K. D. Magnetic relaxation in ordered systems. Nature. 1970 Feb 7;225(5232):542–544. doi: 10.1038/225542a0. [DOI] [PubMed] [Google Scholar]
  15. Hansen J. R. Pulsed NMR study of water mobility in muscle and brain tissue. Biochim Biophys Acta. 1971;230(3):482–486. doi: 10.1016/0304-4165(71)90177-2. [DOI] [PubMed] [Google Scholar]
  16. Hazlewood C. F., Chang D. C., Nichols B. L., Rorschach H. E. Interaction of water molecules with macromolecular structures in cardiac muscle. J Mol Cell Cardiol. 1971 Mar;2(1):51–53. doi: 10.1016/0022-2828(71)90078-2. [DOI] [PubMed] [Google Scholar]
  17. Hazlewood C. F., Nichols B. L., Chamberlain N. F. Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle. Nature. 1969 May 24;222(5195):747–750. doi: 10.1038/222747a0. [DOI] [PubMed] [Google Scholar]
  18. Hazlewood C. F., Nichols B. L., Chang D. C., Brown B. On the state of water in developing muscle: a study of the major phase of ordered water in skeletal muscle and its relationship to sodium concentration. Johns Hopkins Med J. 1971 Mar;128(3):117–131. [PubMed] [Google Scholar]
  19. Hollis D. P., Economou J. S., Parks L. C., Eggleston J. C., Saryan L. A., Czeister J. L. Nuclear magnetic resonance studies of several experimental and human malignant tumors. Cancer Res. 1973 Sep;33(9):2156–2160. [PubMed] [Google Scholar]
  20. James T. L., Gillen K. T. Nuclear magnetic resonance relaxation time and self-diffusion constant of water in hen egg white and yolk. Biochim Biophys Acta. 1972 Nov 24;286(1):10–15. doi: 10.1016/0304-4165(72)90083-9. [DOI] [PubMed] [Google Scholar]
  21. Ling G. N., Kromash M. H. The extracellular space of voluntary muscle tissues. J Gen Physiol. 1967 Jan;50(3):677–694. doi: 10.1085/jgp.50.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McKay R. A., Woessner D. E. A simple single-coil probe for pulsed nuclear magnetic resonance. J Sci Instrum. 1966 Nov;43(11):838–840. doi: 10.1088/0950-7671/43/11/417. [DOI] [PubMed] [Google Scholar]
  23. McLaughlin S. G., Hinke J. A. Sodium and water binding in single striated muscle fibers of the giant barnacle. Can J Physiol Pharmacol. 1966 Sep;44(5):837–848. doi: 10.1139/y66-102. [DOI] [PubMed] [Google Scholar]
  24. Migchelsen C., Berendsen H. J., Rupprecht A. Hydration of DNA. Comparison of nuclear magnetic resonance results for oriented DNA in the A,B and C form. J Mol Biol. 1968 Oct 14;37(1):235–237. doi: 10.1016/0022-2836(68)90087-9. [DOI] [PubMed] [Google Scholar]
  25. Mild K. H., James T. L., Gillen K. T. Nuclear magnetic resonance relaxation time and self-diffusion coefficient measurements of water in frog ovarian eggs (Rana pipiens). J Cell Physiol. 1972 Aug;80(1):155–158. doi: 10.1002/jcp.1040800117. [DOI] [PubMed] [Google Scholar]
  26. ODEBLAD E., BHAR B. N., LINDSTROM G. Proton magnetic resonance of human red blood cells in heavy-water exchange experiments. Arch Biochem Biophys. 1956 Jul;63(1):221–225. doi: 10.1016/0003-9861(56)90025-x. [DOI] [PubMed] [Google Scholar]
  27. Outhred R. K., George E. P. Water and ions in muscles and model systems. Biopolymers. 1973 Feb;13(2):97–103. [PubMed] [Google Scholar]
  28. Pócsik S. Structure of water in muscle. Acta Biochim Biophys Acad Sci Hung. 1969;4(4):395–402. [PubMed] [Google Scholar]
  29. Swift T. J., Fritz O. G., Jr A proton spin-echo study of the state of water in frog nerves. Biophys J. 1969 Jan;9(1):54–59. doi: 10.1016/S0006-3495(69)86368-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vick R. L., Chang D. C., Nichols B. L., Hazlewood C. F., Harvey M. C. Sodium, potassium, and water in cardiac tissues. Ann N Y Acad Sci. 1973 Mar 30;204:575–592. doi: 10.1111/j.1749-6632.1973.tb30805.x. [DOI] [PubMed] [Google Scholar]
  31. Walter J. A., Hope A. B. Nuclear magnetic resonance and the state of water in cells. Prog Biophys Mol Biol. 1971;23:1–20. doi: 10.1016/0079-6107(71)90015-0. [DOI] [PubMed] [Google Scholar]
  32. Walter J. A., Hope A. B. Proton magnetic resonance studies of water in slime mould plasmodia. Aust J Biol Sci. 1971 Jun;24(3):497–507. doi: 10.1071/bi9710497. [DOI] [PubMed] [Google Scholar]
  33. Woessner D. E., Snowden B. S., Jr A pulsed NMR study of dynamics and ordering of water molecules in interfacial systems. Ann N Y Acad Sci. 1973 Mar 30;204:113–124. doi: 10.1111/j.1749-6632.1973.tb30774.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES