Abstract
A model for osmotic flow in porous membranes is developed from classical transport and thermodynamic relations. Mathematical expressions for the reflection coefficient as a function of solute dimension and shape, and more generally pore/bulk distribution coefficient, are derived for long cylindrical pores of circular cross section. For a rigid, spherical macromolecule the osmotic reflection coefficient equals (1 - Φ)2, where Φ is the solute distribution coefficient; this result differs significantly from expressions found in the literature. The effect of weak solute adsorption to (or repulsion from) the pore wall can also be accounted for in the derivation. The driving force for osmotic flow arises from solute-pore wall interactions which cause radial variations in concentration and concomitant gradients in pressure normal to the wall. Implications of this three-dimensionality of osmotic phenomena are discussed with particular reference to the adequacy of one-dimensional treatments in relating reflection coefficient to membrane and solute properties.
Full text
PDF

























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. L., Quinn J. A. Restricted transport in small pores. A model for steric exclusion and hindered particle motion. Biophys J. 1974 Feb;14(2):130–150. doi: 10.1016/S0006-3495(74)70005-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dainty J., Ginzburg B. Z. Irreversible thermodynamics and frictional models of membrane processes, with particular reference to the cell membrane. J Theor Biol. 1963 Sep;5(2):256–265. doi: 10.1016/0022-5193(63)90063-8. [DOI] [PubMed] [Google Scholar]
- Hill A. E. Osmotic flow and solute reflection zones. J Theor Biol. 1972 Aug;36(2):255–270. doi: 10.1016/0022-5193(72)90096-3. [DOI] [PubMed] [Google Scholar]
- Levitt D. G. Kinetics of diffusion and convection in 3.2-A pores. Exact solution by computer simulation. Biophys J. 1973 Feb;13(2):186–206. doi: 10.1016/S0006-3495(73)85979-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Longuet-Higgins H. C., Austin G. The kinetics of osmotic transport through pores of molecular dimensions. Biophys J. 1966 Mar;6(2):217–224. doi: 10.1016/S0006-3495(66)86652-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAURO A. Nature of solvent transfer in osmosis. Science. 1957 Aug 9;126(3267):252–253. doi: 10.1126/science.126.3267.252. [DOI] [PubMed] [Google Scholar]
- MAURO A. OSMOTIC FLOW IN A RIGID POROUS MEMBRANE. Science. 1965 Aug 20;149(3686):867–869. doi: 10.1126/science.149.3686.867. [DOI] [PubMed] [Google Scholar]
- Mikulecky D. C. A continuum mechanical approach to the flow equations for membrane transport. I. Water flow. Biophys J. 1972 Dec;12(12):1642–1660. doi: 10.1016/S0006-3495(72)86187-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perl W. A friction coefficient, series-parallel channel model for transcapillary flux of nonelectrolytes and water. Microvasc Res. 1973 Sep;6(2):169–193. doi: 10.1016/0026-2862(73)90018-6. [DOI] [PubMed] [Google Scholar]
- RENKIN E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954 Nov 20;38(2):225–243. [PMC free article] [PubMed] [Google Scholar]
- ROBBINS E., MAURO A. Experimental study of the independence of diffusion and hydrodynamic permeability coefficients in collodion membranes. J Gen Physiol. 1960 Jan;43:523–532. doi: 10.1085/jgp.43.3.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray P. M. On the Theory of Osmotic Water Movement. Plant Physiol. 1960 Nov;35(6):783–795. doi: 10.1104/pp.35.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solomon A. K. Characterization of biological membranes by equivalent pores. J Gen Physiol. 1968 May;51(5 Suppl):335S+–335S+. [PubMed] [Google Scholar]
