Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1975 Feb;15(2 Pt 1):83–93. doi: 10.1016/s0006-3495(75)85794-8

Quenching of excited chlorophyll A in vivo by nitrobenzene.

G Papageorgiou, M Tsimilli-Michael, J Isaakidou
PMCID: PMC1334597  PMID: 1111633

Abstract

Nitrobenzene exerts a dual effect on the excitation of chlorophyll a(Chl a) in vivo. (a) A 3(3,4-dichlorophenyl)-1,1-dimethylurea-inhibited quenching that manifests as a partial inhibition of variable chloroplast fluorescence and of 2,6-dichlorophenol indophenol (DCPIP) photoreduction and saturates at ca. 5-10 muM. Since nitrobenzene is not a Hill oxidant, this effect is attributed to a catalyzed back flow of electrons from intersystem intermediates to pre-photosystem II oxidants. (b) A direct quenching of the excited Chl a in vivo. This effect has a threshold of ca. 100 muM nitrobenzene; at higher concentrations it leads to almost complete suppression of chloroplast fluorescence and DCPIP photoreduction. Tris-washed chloroplast enriched in the photosystem II reaction center species Z+Q- and ZQ- are nearly four times more sensitive to nitrobenzene quenching than those enriched in Z+Q. On the other hand, normal chloroplasts are about 10 to the fourth times more sensitive. Hence, it is argued that the extreme sensitivity of normal chloroplast fluorescence is not due to a preferential association of nitrobenzene with a particular redox species of the reaction center.

Full text

PDF
83

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amesz J., Fork D. C. Quenching of chlorophyll fluorescence by quinones in algae and chloroplasts. Biochim Biophys Acta. 1967 Jul 5;143(1):97–107. doi: 10.1016/0005-2728(67)90114-4. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennoun P. Réoxydation du quencher de fluorescence "Q" en présence de 3-(3,4-dichlorophényl)-1,1-diméthylurée. Biochim Biophys Acta. 1970 Sep 1;216(2):357–363. doi: 10.1016/0005-2728(70)90227-6. [DOI] [PubMed] [Google Scholar]
  4. Borisov A. Y., Il'ina M. D. The fluorescence lifetime and energy migration mechanism in photosystem I of plants. Biochim Biophys Acta. 1973 May 30;305(2):364–371. doi: 10.1016/0005-2728(73)90182-5. [DOI] [PubMed] [Google Scholar]
  5. Döring G., Renger G., Vater J., Witt H. T. Properties of the photoactive chlorophyll-aII in photosynthesis. Z Naturforsch B. 1969 Sep;24(9):1139–1143. doi: 10.1515/znb-1969-0911. [DOI] [PubMed] [Google Scholar]
  6. Etienne A. L., Lavergne J. Action du m-dinitrobenzène sur la phase thermique d'induction de fluorescence en photosynthèse. Biochim Biophys Acta. 1972 Nov 17;283(2):268–278. doi: 10.1016/0005-2728(72)90243-5. [DOI] [PubMed] [Google Scholar]
  7. Lavorel J., Joliot P. A connected model of the photosynthetic unit. Biophys J. 1972 Jul;12(7):815–831. doi: 10.1016/S0006-3495(72)86125-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mohanty P., Braun B. Z., Govindjee Fluorescence and delayed light emission in Tris-washed chloroplasts. FEBS Lett. 1972 Feb 15;20(3):273–276. doi: 10.1016/0014-5793(72)80085-1. [DOI] [PubMed] [Google Scholar]
  9. Mohanty P., Mar T., Govindjee Action of hydroxylamine in the red alga Porphyridium cruentum. Biochim Biophys Acta. 1971 Nov 2;253(1):213–221. doi: 10.1016/0005-2728(71)90247-7. [DOI] [PubMed] [Google Scholar]
  10. Müller A., Lumry R., Walker M. S. Light-intensity dependence of the in vivo fluorescence lifetime of chlorophyll. Photochem Photobiol. 1969 Feb;9(2):113–126. doi: 10.1111/j.1751-1097.1969.tb05916.x. [DOI] [PubMed] [Google Scholar]
  11. Okayama S., Butler W. L. The influence of cytochrome b 559 on the fluorescence yield of chloroplasts at low temperature. Biochim Biophys Acta. 1972 Jun 23;267(3):523–529. doi: 10.1016/0005-2728(72)90180-6. [DOI] [PubMed] [Google Scholar]
  12. Papageorgiou G., Argoudelis C. Cation-dependent quenching of the fluorescence of chlorophyll a in vivo by nitroaromatic compounds. Arch Biochem Biophys. 1973 May;156(1):134–142. doi: 10.1016/0003-9861(73)90350-0. [DOI] [PubMed] [Google Scholar]
  13. Rosenberg J. L., Sahu S., Bigat T. K. Quantum accumulation in photosynthetic oxygen evolution. Biophys J. 1972 Jul;12(7):839–850. doi: 10.1016/S0006-3495(72)86127-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. TEALE F. W. The extent of energy migration and chlorophyl. A orientation in Chlorella. Biochim Biophys Acta. 1960 Jul 29;42:69–75. doi: 10.1016/0006-3002(60)90754-x. [DOI] [PubMed] [Google Scholar]
  15. Whitten D. G., Lopp I. G., Wildes P. D. Fluorescence of zinc and magnesium etioporphyrin. I. Quenching and wavelength shifts due to complex formation. J Am Chem Soc. 1968 Dec 18;90(26):7196–7200. doi: 10.1021/ja01028a003. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES