Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1975 Jan;15(1):37–54. doi: 10.1016/S0006-3495(75)85790-0

Axon voltage-clamp simulations. III. Postsynaptic region.

R W Joyner, J W Moore, F Ramón
PMCID: PMC1334609  PMID: 169925

Abstract

This is the third in a series of four papers in which we present the numerical simulations of the application of the voltage clamp technique to excitable cells. In this paper we discuss the problem of voltage clamping a region of a cylindrical cell using microelectrodes for current injection and voltage recording. A recently developed technique (Llinás et al., 1974) of internal application of oil drops to electrically insulate a short length of the postsynaptic region of the squid giant synapse is evaluated by simulation of the voltage clamp of an excitable cylindrical cell of finite length with variable placement of the current and voltage electrodes. Our results show that ENa can be determined quite accurately with feasible oil gap lengths but that the determination of the reversal potential for the synaptic conductance, ES, can be considerably in error. The error in the determination of ES dependp, and especially the membrane resistance at the time the synaptic conductance occurs. It is shown that the application of tetraethylammonium chloride to block the active potassium conductance very significantly reduces the error in the determination of ES. In addition we discuss the effects of cable length and electrode position on the apparent amplitude and time course of the syn aptic conductance change. These results are particularly relevant to the application of the voltage clamp technique to cells with nonsomatic synapses. The method of simulation presented here provides a tool for evaluation of voltage clamp analysis of synaptic transmission for any cell with known membrane parameters and geometry.

Full text

PDF
37

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG C. M., BINSTOCK L. ANOMALOUS RECTIFICATION IN THE SQUID GIANT AXON INJECTED WITH TETRAETHYLAMMONIUM CHLORIDE. J Gen Physiol. 1965 May;48:859–872. doi: 10.1085/jgp.48.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian R. H., Chandler W. K., Hodgkin A. L. Voltage clamp experiments in striated muscle fibres. J Physiol. 1970 Jul;208(3):607–644. doi: 10.1113/jphysiol.1970.sp009139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adrian R. H., Peachey L. D. Reconstruction of the action potential of frog sartorius muscle. J Physiol. 1973 Nov;235(1):103–131. doi: 10.1113/jphysiol.1973.sp010380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gage P. W., Moore J. W. Synaptic current at the squid giant synapse. Science. 1969 Oct 24;166(3904):510–512. doi: 10.1126/science.166.3904.510. [DOI] [PubMed] [Google Scholar]
  5. HAGIWARA S., TASAKI I. A study on the mechanism of impulse transmission across the giant synapse of the squid. J Physiol. 1958 Aug 29;143(1):114–137. doi: 10.1113/jphysiol.1958.sp006048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MOORE J. W., ADELMAN W. J., Jr Electronic measurement of the intracellular concentration and net flux of sodium in the squid axon. J Gen Physiol. 1961 Sep;45:77–92. doi: 10.1085/jgp.45.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Magleby K. L., Stevens C. F. A quantitative description of end-plate currents. J Physiol. 1972 May;223(1):173–197. doi: 10.1113/jphysiol.1972.sp009840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ramón F., Anderson N., Joyner R. W., Moore J. W. Axon voltage-clamp simulations. A multicellular preparation. Biophys J. 1975 Jan;15(1):55–69. doi: 10.1016/S0006-3495(75)85791-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. TAYLOR R. E., MOORE J. W., COLE K. S. Analysis of certain errors in squid axon voltage clamp measurements. Biophys J. 1960 Nov;1:161–202. doi: 10.1016/s0006-3495(60)86882-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES