Abstract
A simplified FitzHugh-Nagumo nerve conduction equation with known traveling wave solutions is considered. The spatial stability of these solutions is analyzed to determine which solutions should occur in signal transmission along such a nerve model. It is found that the slower of the two pulse solutions is unstable while the faster one is stable, so the faster one should occur. This agrees with conjectures which have been made about the solutions of other nerve conduction equations. Furthermore for certain parameter values the equation has two periodic wave solutions, each representing a train of impulses, at each frequency less than a maximum frequency wmax. The slower one is found to be unstable and the faster one to be stable, while that at wmax is found to be neutrally stable. These spatial stability results complement the previous results of Rinzel and Keller (1973. Biophys. J. 13: 1313) on temporal stability, which are applicable to the solutions of initial value problems.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cooley J. W., Dodge F. A., Jr Digital computer solutions for excitation and propagation of the nerve impulse. Biophys J. 1966 Sep;6(5):583–599. doi: 10.1016/S0006-3495(66)86679-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dodge F. A., Jr On the transduction of visual, mechanical, and chemical stimuli. Int J Neurosci. 1972 Jan;3(1):5–14. doi: 10.3109/00207457209147434. [DOI] [PubMed] [Google Scholar]
- Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J. 1961 Jul;1(6):445–466. doi: 10.1016/s0006-3495(61)86902-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgkin A. L. The local electric changes associated with repetitive action in a non-medullated axon. J Physiol. 1948 Mar 15;107(2):165–181. doi: 10.1113/jphysiol.1948.sp004260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J Physiol. 1950 Oct 16;111(3-4):261–282. doi: 10.1113/jphysiol.1950.sp004479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rinzel J., Keller J. B. Traveling wave solutions of a nerve conduction equation. Biophys J. 1973 Dec;13(12):1313–1337. doi: 10.1016/S0006-3495(73)86065-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein R. B. The frequency of nerve action potentials generated by applied currents. Proc R Soc Lond B Biol Sci. 1967 Jan 31;167(1006):64–86. doi: 10.1098/rspb.1967.0013. [DOI] [PubMed] [Google Scholar]
