Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1975 Aug;15(8):795–830. doi: 10.1016/S0006-3495(75)85856-5

Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate.

P S Andersen, M Fuchs
PMCID: PMC1334782  PMID: 1148364

Abstract

Tetraphenylborate-induced current transients were studied in lipid bilayers formed from bacterial phosphatidylethanolamine in decane. This ion movement was essentially confined to the membrane in terior during the current transients. Charge movement through the interior of the membrane during the current transients was studied as a function of the applied potential. The transferred charge approached an upper limit with increasing potential, which is interpreted to be the amount of charge due to tetraphenylborate ions absorbed into the boundary regions of the bilayer. A further analysis of the charge transfer as a function of potential indicates that the movement of tetraphenylborate ions is only influenced by a certain farction of the applied potential. For bacterial phosphatidylethanolamine bilayers the effective potential is 77 +/- 4% of the applied potential. The initial conductance and the time constant of the current transients were studied as a function of the applied potential using a Nernst-Planck electrodiffusion regime. It was found that an image-force potential energy barrier gave a good prediction of the observed behavior, provided that the effective potential was used in the calculations. We could not get a satisfactory prediction of the observed behavior with an Eyring rate theory model or a trapezoidal potential energy barrier.

Full text

PDF
795

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babakov A. V., Ermishkin L. N., Liberman E. A. Influence of electric field on the capacity of phospholipid membranes. Nature. 1966 May 28;210(5039):953–955. doi: 10.1038/210953b0. [DOI] [PubMed] [Google Scholar]
  3. Benz R., Stark G., Janko K., Läuger P. Valinomycin-mediated ion transport through neutral lipid membranes: influence of hydrocarbon chain length and temperature. J Membr Biol. 1973;14(4):339–364. doi: 10.1007/BF01868084. [DOI] [PubMed] [Google Scholar]
  4. Cogan U., Shinitzky M., Weber G., Nishida T. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry. 1973 Jan 30;12(3):521–528. doi: 10.1021/bi00727a026. [DOI] [PubMed] [Google Scholar]
  5. Finkelstein A., Cass A. Permeability and electrical properties of thin lipid membranes. J Gen Physiol. 1968 Jul 1;52(1):145–172. [PMC free article] [PubMed] [Google Scholar]
  6. Finkelstein A., Mauro A. Equivalent Circuits as Related to Ionic Systems. Biophys J. 1963 May;3(3):215–237. doi: 10.1016/s0006-3495(63)86817-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haydon D. A., Hladky S. B. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys. 1972 May;5(2):187–282. doi: 10.1017/s0033583500000883. [DOI] [PubMed] [Google Scholar]
  8. Haydon D. A., Myers V. B. Surface charge, surface dipoles and membrane conductance. Biochim Biophys Acta. 1973 May 25;307(3):429–443. doi: 10.1016/0005-2736(73)90289-7. [DOI] [PubMed] [Google Scholar]
  9. Hladky S. B. The energy barriers to ion transport by nonactin across thin lipid membranes. Biochim Biophys Acta. 1974 May 30;352(1):71–85. doi: 10.1016/0005-2736(74)90180-1. [DOI] [PubMed] [Google Scholar]
  10. Hladky S. B. The steady-state theory of the carrier transport of ions. J Membr Biol. 1972;10(1):67–91. doi: 10.1007/BF01867848. [DOI] [PubMed] [Google Scholar]
  11. Keynes R. D., Rojas E. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J Physiol. 1974 Jun;239(2):393–434. doi: 10.1113/jphysiol.1974.sp010575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liberman E. A., Topaly V. P. Pronitsaemost' bimolekuliarnykh fosfolipidnykh membran dlia zhirorastvorimykh ionov. Biofizika. 1969 May-Jun;14(3):452–461. [PubMed] [Google Scholar]
  13. Läuger P., Stark G. Kinetics of carrier-mediated ion transport across lipid bilayer membranes. Biochim Biophys Acta. 1970 Sep 15;211(3):458–466. doi: 10.1016/0005-2736(70)90251-8. [DOI] [PubMed] [Google Scholar]
  14. McLaughlin S. G., Szabo G., Eisenman G., Ciani S. M. Surface charge and the conductance of phospholipid membranes. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1268–1275. doi: 10.1073/pnas.67.3.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Muller R. U., Finkelstein A. The effect of surface charge on the voltage-dependent conductance induced in thin lipid membranes by monazomycin. J Gen Physiol. 1972 Sep;60(3):285–306. doi: 10.1085/jgp.60.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Neumcke B., Läuger P. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations. Biophys J. 1969 Sep;9(9):1160–1170. doi: 10.1016/S0006-3495(69)86443-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shinitzky M., Barenholz Y. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem. 1974 Apr 25;249(8):2652–2657. [PubMed] [Google Scholar]
  18. Stark G., Ketterer B., Benz R., Läuger P. The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Biophys J. 1971 Dec;11(12):981–994. doi: 10.1016/S0006-3495(71)86272-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Szabo G., Eisenman G., McLaughlin S. G., Krasne S. Ionic probes of membrane structures. Ann N Y Acad Sci. 1972 Jun 20;195:273–290. [PubMed] [Google Scholar]
  20. White S. H. A study of lipid bilayer membrane stability using precise measurements of specific capacitance. Biophys J. 1970 Dec;10(12):1127–1148. doi: 10.1016/S0006-3495(70)86360-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES