Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1976 May;16(5):527–533. doi: 10.1016/S0006-3495(76)85707-4

A possible mechanism for concentrating sodium and potassium in the cell nucleus.

R D Moore, G A Morrill
PMCID: PMC1334873  PMID: 1276381

Abstract

A dynamic, nonequilibrium mechanism is proposed for concentrating both Na+ and K+ in the cell nucleus. The model is consistent with experiment observations and with known properties of cell membranes. This model could explaing the high nucleoplasm to cytoplasm ratios of Na+ and/or K+ reported for liver kidney, thymus, frog skin, ascites cells, and amphibian oocytes.

Full text

PDF
527

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackburn W. R., Vinijchaikul K. The pancreas in kwashiorkor. An electron microscopic study. Lab Invest. 1969 Apr;20(4):305–318. [PubMed] [Google Scholar]
  2. Bulger R. E. Use of potassium pyroantimonate in the localization of sodium ions in rat kidney tissue. J Cell Biol. 1969 Jan;40(1):79–94. doi: 10.1083/jcb.40.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cannon J. D., Dick D. A., Ho-Yen D. O. Intracellular sodium and potassium concentrations in toad and frog oocytes during development. J Physiol. 1974 Sep;241(2):497–508. doi: 10.1113/jphysiol.1974.sp010668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carothers Z. B. Studies of spermatogenesis in the Hepaticae. 3. Continuity between plasma membrane and nuclear envelope in androgonial cells of Blasia. J Cell Biol. 1972 Feb;52(2):273–282. doi: 10.1083/jcb.52.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Century T. J., Fenichel I. R., Horowitz S. B. The concentrations of water, sodium and potassium in the nucleus and cytoplasm of amphibian oocytes. J Cell Sci. 1970 Jul;7(1):5–13. doi: 10.1242/jcs.7.1.5. [DOI] [PubMed] [Google Scholar]
  6. Century T. J., Horowitz S. B. Sodium exchange in the cytoplasm and nucleus of amphibian oocytes. J Cell Sci. 1974 Nov;16(2):465–471. doi: 10.1242/jcs.16.2.465. [DOI] [PubMed] [Google Scholar]
  7. Claret B., Claret M., Mazet J. L. Ionic transport and membrane potential of rat liver cells in normal and low-chloride solutions. J Physiol. 1973 Apr;230(1):87–101. doi: 10.1113/jphysiol.1973.sp010176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. EPSTEIN M. A. The fine structural organisation of Rous tumour cells. J Biophys Biochem Cytol. 1957 Nov 25;3(6):851–858. doi: 10.1083/jcb.3.6.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GRASSO J. A., SWIFT H., ACKERMAN G. A. Observations on the development of erythrocytes in mammalian fetal liver. J Cell Biol. 1962 Aug;14:235–254. doi: 10.1083/jcb.14.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ITOH S., SCHWARTZ I. L. Sodium and potassium distribution in isolated thymus nuclei. Am J Physiol. 1957 Mar;188(3):490–498. doi: 10.1152/ajplegacy.1957.188.3.490. [DOI] [PubMed] [Google Scholar]
  11. LANGENDORF H., SIEBERT G., NITZ-LITZOW D. PARTICIPATION OF RAT LIVER NUCLEI IN MOVEMENTS OF SODIUM. Nature. 1964 Nov 28;204:888–888. doi: 10.1038/204888a0. [DOI] [PubMed] [Google Scholar]
  12. LOEWENSTEIN W. R., KANNO Y. Some electrical properties of the membrane of a cell nucleus. Nature. 1962 Aug 4;195:462–464. doi: 10.1038/195462a0. [DOI] [PubMed] [Google Scholar]
  13. LOEWENSTEIN W. R., KANNO Y. The electrical conductance and potential across the membrane of some cell nuclei. J Cell Biol. 1963 Feb;16:421–425. doi: 10.1083/jcb.16.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MARINOS N. G. The nuclear envelope of plant cells. J Ultrastruct Res. 1960 Feb;3:328–333. doi: 10.1016/s0022-5320(60)80019-6. [DOI] [PubMed] [Google Scholar]
  15. Merriam R. W. The intracellular distribution of the free amino acid pool in frog oocytes. Exp Cell Res. 1969 Aug;56(2):259–264. doi: 10.1016/0014-4827(69)90011-1. [DOI] [PubMed] [Google Scholar]
  16. Morrill G. A., Kostellow A. B., Murphy J. B. Sequential forms of ATPase activity correlated with changes in cation binding and membrane potential from meiosis to first clevage in R. pipiens. Exp Cell Res. 1971 Jun;66(2):289–298. doi: 10.1016/0014-4827(71)90680-x. [DOI] [PubMed] [Google Scholar]
  17. Morrill G. A., Rosenthal J., Watson D. E. Membrane permeability changes in amphibian eggs at ovulation. J Cell Physiol. 1966 Jun;67(3):375–381. doi: 10.1002/jcp.1040670303. [DOI] [PubMed] [Google Scholar]
  18. NAORA H., NAORA H., IZAWA M., ALLFREY V. G., MIRSKY A. E. Some observations on differences in composition between the nucleus and cytoplasm of the frog oocyte. Proc Natl Acad Sci U S A. 1962 May 15;48:853–859. doi: 10.1073/pnas.48.5.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pietrzyk C., Heinz E. The sequestration of Na+, K+ and Cl- in the cellular nucleus and its energetic consequences for the gradient hypothesis of amino acid transport in Ehrlich cells. Biochim Biophys Acta. 1974 Jun 29;352(3):397–411. doi: 10.1016/0005-2736(74)90231-4. [DOI] [PubMed] [Google Scholar]
  20. Siebert G., Langendorf H., Hannover R., Nitz-Litzow D., Pressman B. C., Moore C. Untersuchungen zur Rolle des Natrium-Stoffwechels im Zellkern der Rattenleber. Hoppe Seylers Z Physiol Chem. 1965;343(1):101–115. [PubMed] [Google Scholar]
  21. WATSON M. L. The nuclear envelope; its structure and relation to cytoplasmic membranes. J Biophys Biochem Cytol. 1955 May 25;1(3):257–270. doi: 10.1083/jcb.1.3.257. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES