Abstract
We have measured the intermolecular interactions of oxygenated sickle hemoglobin molecules in cells and in cell-free solutions, and have compared the results with similar data for liganded normal adult hemoglobin. The experiments involve the measurement of the spin-lattice relaxation time T1 of protons of solvent water molecules, as a function of an externally applied static magnetic field. From such data, one can derive a correlation time tauc, for each sample, which is a measure of the time taken for a hemoglobin molecule to randomize its orientation due to Brownian motion. Thus tauc is a measure of the freedom of rotational motion, on a molecular or microscopic level, of hemoglobin molecules. Intermolecular interactions will reduce this freedom of motion and lengthen tauc. We find that oxygenated sickle hemoglobin molecules have an additional intermolecular interaction not found for normal hemoglobin. This extra interaction is increased by the presence of either inorganic phosphate or diphosphoglycerate, and is greater for sickle hemoglobin within cells than in cell-free solutions. By comparing the present results with published data on the viscosity of oxygenated sickle and normal hemoglobin, we conclude that, at concentrations comparable to intracellular values, oxygenated sickle hemoglobin molecules form aggregates several tetramers in size. The possibility exists that these aggregates are the earliest stage of fiber formation itself, the physical basis of the sickling phenomena.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benesch R., Benesch R. E., Yung S. The solubility of hemoglobin beta 4 S, the mutant subunits of sickle cell hemoglobin. Biochem Biophys Res Commun. 1973 Nov 16;55(2):261–265. doi: 10.1016/0006-291x(73)91082-6. [DOI] [PubMed] [Google Scholar]
- Bertles J. F., Milner P. F. Irreversibly sickled erythrocytes: a consequence of the heterogeneous distribution of hemoglobin types in sickle-cell anemia. J Clin Invest. 1968 Aug;47(8):1731–1741. doi: 10.1172/JCI105863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briehl R. W., Ewert S. Effects of pH, 2,3-diphosphoglycerate and salts on gelation of sickle cell deoxyhemoglobin. J Mol Biol. 1973 Nov 5;80(3):445–458. doi: 10.1016/0022-2836(73)90415-4. [DOI] [PubMed] [Google Scholar]
- Chien S., Usami S., Bertles J. F. Abnormal rheology of oxygenated blood in sickle cell anemia. J Clin Invest. 1970 Apr;49(4):623–634. doi: 10.1172/JCI106273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cottam G. L., Valentine K. M., Yamaoka K., Waterman M. R. The gelation of deoxyhemoglobin S in erythrocytes as detected by transverse water proton relazation measurements. Arch Biochem Biophys. 1974 Jun;162(2):487–492. doi: 10.1016/0003-9861(74)90208-2. [DOI] [PubMed] [Google Scholar]
- DINTENFASS L. Considerations of the internal viscosity of red cells and its effect on the viscosity of whole blood. Angiology. 1962 Aug;13:333–344. doi: 10.1177/000331976201300801. [DOI] [PubMed] [Google Scholar]
- DINTENFASS L. RHEOLOGY OF PACKED RED BLOOD CELLS CONTAINING HEMOGLOBINS A-A, S-A, AND S-S. J Lab Clin Med. 1964 Oct;64:594–600. [PubMed] [Google Scholar]
- ERSLEV A. J., ATWATER J. EFFECT OF MEAN CORPUSCULAR HEMOGLOBIN CONCENTRATION ON VISCOSITY. J Lab Clin Med. 1963 Sep;62:401–406. [PubMed] [Google Scholar]
- Fabry M. E., Koenig S. H., Schillinger W. E. Nuclear magnetic relaxation dispersion in protein solutions. IV. Proton relaxation at the active site of carbonic anhydrase. J Biol Chem. 1970 Sep 10;245(17):4256–4262. [PubMed] [Google Scholar]
- Finch J. T., Perutz M. F., Bertles J. F., Döbler J. Structure of sickled erythrocytes and of sickle-cell hemoglobin fibers. Proc Natl Acad Sci U S A. 1973 Mar;70(3):718–722. doi: 10.1073/pnas.70.3.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fung L. W., Lin K. L., Ho C. High-resolution proton nuclear magnetic resonance studies of sickle cell hemoglobin. Biochemistry. 1975 Jul 29;14(15):3424–3430. doi: 10.1021/bi00686a021. [DOI] [PubMed] [Google Scholar]
- Koenig S. H., Brown R. D., 3rd, Brewer C. F. Solvent proton magnetic relaxation dispersion in solutions of concanavalin A. Proc Natl Acad Sci U S A. 1973 Feb;70(2):475–479. doi: 10.1073/pnas.70.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koenig S. H., Hallenga K., Shporer M. Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2667–2671. doi: 10.1073/pnas.72.7.2667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koenig S. H., Schillinger W. E. Nuclear magnetic relaxation dispersion in protein solutions. I. Apotransferrin. J Biol Chem. 1969 Jun 25;244(12):3283–3289. [PubMed] [Google Scholar]
- Lindstrom T. R., Ho C. Effects of anions and ligands on the tertiary structure around ligand binding site in human adult hemoglobin. Biochemistry. 1973 Jan 2;12(1):134–139. doi: 10.1021/bi00725a022. [DOI] [PubMed] [Google Scholar]
- Minton A. P. A thermodynamic model for gelation of sickle-cell hemoglobin. J Mol Biol. 1974 Feb 5;82(4):483–498. doi: 10.1016/0022-2836(74)90243-5. [DOI] [PubMed] [Google Scholar]
- Seakins M., Gibbs W. N., Milner P. F., Bertles J. F. Erythrocyte Hb-S concentration. An important factor in the low oxygen affinity of blood in sickle cell anemia. J Clin Invest. 1973 Feb;52(2):422–432. doi: 10.1172/JCI107199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams R. C., Jr Concerted formation of the gel of hemoglobin S. Proc Natl Acad Sci U S A. 1973 May;70(5):1506–1508. doi: 10.1073/pnas.70.5.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson W. W., Luzzana M. R., Penniston J. T., Johnson C. S., Jr Pregelation aggregation of sickle cell hemoglobin. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1260–1263. doi: 10.1073/pnas.71.4.1260. [DOI] [PMC free article] [PubMed] [Google Scholar]
