Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1976 Jul;16(7):705–717. doi: 10.1016/S0006-3495(76)85723-2

Characterization of drug iontophoresis with a fast microassay technique.

V E Dionne
PMCID: PMC1334895  PMID: 938714

Abstract

The iontophoretic release of drugs from micropipettes into free (Ringer's) solution was described using an ion-selective microelectrode assay method. This characterization, with a temporal resolution of 20 ms, showed that the equilibrium rate of drug transport was not linearly proportional to release current; the departure from linearity was increased by backing current and the result was demonstrated with analytically derived drug release functions. The general relation between the drug transport rate and release current was independent of the specific drug or pipette resistance; no functional relation was observed that might quantitatively predict this dependence without prior use of the assay. The diffusion coefficients at 25 degrees C in frog Ringer's of the drugs used in this study, all neuromuscular agonists, were determined: all values X 10(6) cm2/s; acetylcholine 6.11 +/- 0.30; carbamylcholine 7.44 +/- 0.34; 3-(m-hydroxyphenyl) prophyltrimethyl ammonium 5.79 +/- 0.13.

Full text

PDF
705

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clarke G., Hill R. G., Simmonds M. A. Microiontophoretic release of drugs from micropipettes: use of 24Na as a model. Br J Pharmacol. 1973 May;48(1):156–161. doi: 10.1111/j.1476-5381.1973.tb08234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cornwall M. C., Peterson D. F., Kunze D. L., Walker J. L., Brown A. M. Intracellular potassium and chloride activities measured with liquid ion exchanger microelectrodes. Brain Res. 1970 Oct 28;23(3):433–436. doi: 10.1016/0006-8993(70)90070-3. [DOI] [PubMed] [Google Scholar]
  3. DEL CASTILLO J., KATZ B. On the localization of acetylcholine receptors. J Physiol. 1955 Apr 28;128(1):157–181. doi: 10.1113/jphysiol.1955.sp005297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dionne V. E., Stevens C. F. Voltage dependence of agonist effectiveness at the frog neuromuscular junction: resolution of a paradox. J Physiol. 1975 Oct;251(2):245–270. doi: 10.1113/jphysiol.1975.sp011090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dreyer F., Peper K. Iontophoretic application of acetylcholine: advantages of high resistance micropipettes in connection with an electronic current pump. Pflugers Arch. 1974 Apr 22;348(3):263–272. doi: 10.1007/BF00587417. [DOI] [PubMed] [Google Scholar]
  6. Dreyer F., Peper K. The acetylcholine sensitivity in the vicinity of the neuromuscular junction of the frog. Pflugers Arch. 1974 May 6;348(4):273–286. doi: 10.1007/BF00589217. [DOI] [PubMed] [Google Scholar]
  7. KRNJEVIC K., MITCHELL J. F. Diffusion of acetylcholine in agar gels and in the isolated rat diaphragm. J Physiol. 1960 Oct;153:562–572. doi: 10.1113/jphysiol.1960.sp006555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KRNJEVIC K., MITCHELL J. F., SZERB J. C. Determination of iontophoretic release of acetylcholine from micropipettes. J Physiol. 1963 Mar;165:421–436. doi: 10.1113/jphysiol.1963.sp007067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Khuri R., Hajjar J. J., Agulian S., Bogharian K., Kalloghlian A., Bizri H. Intracellular potassium in cells of the proximal tubule of Necturns maculosus. Pflugers Arch. 1972;338(1):73–80. doi: 10.1007/BF00586856. [DOI] [PubMed] [Google Scholar]
  10. Krív N., Syková E., Vyklický L. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission. J Physiol. 1975 Jul;249(1):167–182. doi: 10.1113/jphysiol.1975.sp011009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuffler S. W., Yoshikami D. The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J Physiol. 1975 Oct;251(2):465–482. doi: 10.1113/jphysiol.1975.sp011103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kunze D. L., Brown A. M. Internal potassium and chloride activities and the effects of acetylcholine on identifiable Aplysia neurones. Nat New Biol. 1971 Feb 24;229(8):229–231. doi: 10.1038/newbio229229a0. [DOI] [PubMed] [Google Scholar]
  13. Kusano K., Miledi R., Stinnakre J. Microinjection of calcium into droplets of aequorin. Proc R Soc Lond B Biol Sci. 1975 Apr 29;189(1094):39–47. doi: 10.1098/rspb.1975.0039. [DOI] [PubMed] [Google Scholar]
  14. Neher E., Lux H. D. Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow. J Gen Physiol. 1973 Mar;61(3):385–399. doi: 10.1085/jgp.61.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sandblom J., Eisenman G., Walker J. L., Jr Electrical phenomena associated with the transport of ions and ion pairs in liquid ion-exchange membranes. I. Zero current properties. J Phys Chem. 1967 Nov;71(12):3862–3870. doi: 10.1021/j100871a022. [DOI] [PubMed] [Google Scholar]
  16. Zieglgänsberger W., Herz A., Teschemacher H. Electrophoretic release of tritium-labelled glutamic acid from micropipettes in vitro. Brain Res. 1969 Sep;15(1):298–300. doi: 10.1016/0006-8993(69)90337-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES