Abstract
Light diffraction patterns produced by single skeletal muscle fibers and small fiber bundles of Rana pipiens semitendinosus have been examined at rest and during tetanic contraction. The muscle diffraction patterns were recorded with a vidicon camera interfaced to a minicomputer. Digitized video output was analyzed on-line to determine mean sarcomere length, line intensity, and the distribution of sarcomere lengths. The occurrence of first-order line intensity and peak amplitude maxima at approximately 3.0 mum is interpreted in terms of simple scattering theory. Measurements made along the length of a singel fiber reveal small variations in calculated mean sarcomere length (SD about 1.2%) and its percent dispersion (2.1% +/- 0.8%). Dispersion in small multifiber preparations increases approximately linearly with fiber number (about 0.2% per fiber) to a maximum of 8-10% in large bundles. Dispersion measurements based upon diffraction line analysis are comparable to SDs calculated from length distribution histograms obtained by light micrography of the fiber. First-order line intensity decreases by about 40% during tetanus; larger multifibered bundles exhibit substantial increases in sarcomere dispersion during contraction, but single fibers show no appreciable dispersion change. These results suggest the occurrence of asynchronous static or dynamic axial disordering of thick filaments, with a persistence in long range order of sarcomere spacing during contraction in single fibers.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonner R. F., Carlson F. D. Structural dynamics of frog muscle during isometric contraction. J Gen Physiol. 1975 May;65(5):555–581. doi: 10.1085/jgp.65.5.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson F. D. Structural fluctuations in the steady state of muscular contraction. Biophys J. 1975 Jul;15(7):633–649. doi: 10.1016/S0006-3495(75)85845-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleworth D. R., Edman K. A. Changes in sarcomere length during isometric tension development in frog skeletal muscle. J Physiol. 1972 Dec;227(1):1–17. doi: 10.1113/jphysiol.1972.sp010016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujime S. Optical diffraction study of muscle fibers. Biochim Biophys Acta. 1975 Jan 30;379(1):227–238. doi: 10.1016/0005-2795(75)90026-4. [DOI] [PubMed] [Google Scholar]
- Goldspink G., Larson R. E., Davies R. E. Fluctuations in sarcomere length in the chick anterior and posterior latissimus dorsi muscles during isometric contraction. Experientia. 1970 Jan 15;26(1):16–18. doi: 10.1007/BF01900361. [DOI] [PubMed] [Google Scholar]
- HILL D. K. The effect of stimulation on the diffraction of light by striated muscle. J Physiol. 1953 Mar;119(4):501–512. doi: 10.1113/jphysiol.1953.sp004862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F., PEACHEY L. D. The maximum length for contraction in vertebrate straiated muscle. J Physiol. 1961 Apr;156:150–165. doi: 10.1113/jphysiol.1961.sp006665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY H. E., HANSON J. Quantitative studies on the structure of cross-striated myofibrils. I. Investigations by interference microscopy. Biochim Biophys Acta. 1957 Feb;23(2):229–249. doi: 10.1016/0006-3002(57)90325-6. [DOI] [PubMed] [Google Scholar]
- Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
- Kawai M., Kuntz I. D. Optical diffraction studies of muscle fibers. Biophys J. 1973 Sep;13(9):857–876. doi: 10.1016/S0006-3495(73)86031-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marikhin V. A., Miasnikova L. P. Difraktsiia sveta na myshechnykh voloknakh. 1. Analiz geometricheskoi kartiny difraktsii. Tsitologiia. 1970 Oct;12(10):1231–1236. [PubMed] [Google Scholar]
- Paolini P. J., Roos K. P. Length-dependent optical diffraction pattern changes in frog sartorius muscle. Physiol Chem Phys. 1975;7(3):235–254. [PubMed] [Google Scholar]
- Rome E. Light and X-ray diffraction studies of the filament lattice of glycerol-extracted rabbit psoas muscle. J Mol Biol. 1967 Aug 14;27(3):591–602. doi: 10.1016/0022-2836(67)90061-7. [DOI] [PubMed] [Google Scholar]
- Umazume Y., Fujime S. Electro-optical property of extremely stretched skinned muscle fibers. Biophys J. 1975 Feb;15(2 Pt 1):163–180. doi: 10.1016/s0006-3495(75)85799-7. [DOI] [PMC free article] [PubMed] [Google Scholar]