Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1975 Aug;182(2):138–143. doi: 10.1097/00000658-197508000-00010

A small arterial substitute: expanded microporous polytetrafluoroethylene: patency versus porosity.

C D Campbell, D Goldfarb, R Roe
PMCID: PMC1343832  PMID: 1211990

Abstract

Eighty-nine grafts of expanded microporous polytetrafluoroethylene (PTFE) with a diameter of 4 mm, were placed in the carotid and femoral arteries of dogs. The animals were sacrificed at varying intervals beginning three days after operation. Four animals remain alive with patent grafts 10 months post-operatively. Twenty-four of 89 grafts were occluded, an overall patency of 73%. Fibril length (pore size) of the graft material was varied from 4 to 110 microns. Average pore size ranged from 9 to 65 microns. Wall thickness varied from 0.3 to 0.75 mm. Density ranged from 0.24 to 0.35 g/ml. Tissue ingrowth, neointimization and patency rate as compared to pore size, wall-thickness and density of expanded PTFE were observed. Pore size is the primary determinant of tissue ingrowth, neointimization and patency. Of 51 grafts with an average pore size of 22 microns or less, there were 6 occlusions, an 88% patency rate. There were 38 grafts with an average pore size of 34 microns or greater. In these 38 grafts, 18 occlusions were observed, a 53% patency rate. Patent grafts demonstrated tissue ingrowth, capillary formation an a thin neointima. Using small pore grafts, patency rates of 90% can be anticipated in the dog. Expanded microporous PTFE with its ease of handling, strength and pliability may be the vascular prosthesis of choice in man.

Full text

PDF
138

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger K., Sauvage L. R., Rao A. M., Wood S. J. Healing of arterial prostheses in man: its incompleteness. Ann Surg. 1972 Jan;175(1):118–127. doi: 10.1097/00000658-197201000-00018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dale W. A., Lewis M. R. Modified bovine heterografts for arterial replacement. Ann Surg. 1969 Jun;169(6):927–946. doi: 10.1097/00000658-196906000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dormandy J. A., Goetz R. H. Electrically charged wire as suture material for the anastomosis of arteries. Surg Forum. 1966;17:144–146. [PubMed] [Google Scholar]
  4. Gott V. L., Furuse A. Standardized methods for the in vivo evaluation of artificial surfaces. Bull N Y Acad Med. 1972 Feb;48(2):482–493. [PMC free article] [PubMed] [Google Scholar]
  5. Grode G. A., Anderson S. J., Grotta H. M., Falb R. D. Nonthrombogenic materials via a simple coating process. Trans Am Soc Artif Intern Organs. 1969;15:1–6. [PubMed] [Google Scholar]
  6. HARRISON J. H. Synthetic materials as vascular prostheses. I. A comparative study in small vessels of nylon, dacron, orlon, ivalon sponge and teflon. Am J Surg. 1958 Jan;95(1):3–15. doi: 10.1016/0002-9610(58)90735-9. [DOI] [PubMed] [Google Scholar]
  7. Jacobs L. A., Klopp E., Gott V. L. Studies on the fibrinolytic removal of thrombus from prosthetic surfaces. Trans Am Soc Artif Intern Organs. 1968;14:63–68. [PubMed] [Google Scholar]
  8. Matsumoto H., Hasegawa T., Fuse K., Yamamoto M., Saigusa M. A new vascular prosthesis for a small caliber artery. Surgery. 1973 Oct;74(4):519–523. [PubMed] [Google Scholar]
  9. Najjar F. B., Gott V. L. The use of small-diameter Dacron grafts with wall-bonded heparin for venous and arterial replacement: canine studies and preliminary clinical experience. Surgery. 1970 Dec;68(6):1053–1063. [PubMed] [Google Scholar]
  10. PHELAN J. T., YOUNG W. P., GALE J. W. The effect of suture material on small artery anastomoses. Surg Gynecol Obstet. 1958 Jul;107(1):79–83. [PubMed] [Google Scholar]
  11. Parsonnet V., Alpert J., Brief D. K. Autogenous polypropylene-supported collagen tubes for long-term arterial replacement. Surgery. 1971 Dec;70(6):935–939. [PubMed] [Google Scholar]
  12. Perloff L. J., Reckard C. R., Rowlands D. T., Jr, Barker C. F. The venous homograft: an immunological question. Surgery. 1972 Dec;72(6):961–970. [PubMed] [Google Scholar]
  13. SHARP W. V., FALOR W. H. Rubber latex tubing as a vascular prosthesis. Am J Surg. 1963 Jun;105:802–811. doi: 10.1016/0002-9610(63)90495-1. [DOI] [PubMed] [Google Scholar]
  14. SHARP W. V., GARDNER D. L., ANDRESEN G. J. ADAPTATION OF ELASTIC MATERIALS FOR SMALL VESSEL REPLACEMENT. Trans Am Soc Artif Intern Organs. 1965;11:336–340. doi: 10.1097/00002480-196504000-00062. [DOI] [PubMed] [Google Scholar]
  15. STUMP M. M., O'NEAL R. M., HALPERT B., DEBAKEY M. E., JORDAN G. L., Jr GROWTH POTENTIAL OF CIRCULATING CELLS IN THE PERIPHERAL BLOOD. Surg Forum. 1963;14:301–303. [PubMed] [Google Scholar]
  16. Sauvage L. R., Berger K., Wood S. J., Nakagawa Y., Mansfield P. B. An external velour surface for porous arterial prostheses. Surgery. 1971 Dec;70(6):940–953. [PubMed] [Google Scholar]
  17. Sawyer P. N., Wu K. T., Wesolowski S. A., Brattain W. H., Boddy P. J. Long-term patency of solid-wall vascular prostheses. Arch Surg. 1965 Nov;91(5):735–742. doi: 10.1001/archsurg.1965.01320170029005. [DOI] [PubMed] [Google Scholar]
  18. Sharp W. V., Gardner D. L., Andresen G. J. A bioelectric polyurethane elastomere for intravascular replacement. Trans Am Soc Artif Intern Organs. 1966;12:179–182. [PubMed] [Google Scholar]
  19. Sharp W. V. The carotid artery--a test site for small vessel prosthetics. J Surg Res. 1970 Jan;10(1):41–46. doi: 10.1016/0022-4804(70)90008-9. [DOI] [PubMed] [Google Scholar]
  20. Sharp W. V., Wright J., Flaksman R. J., McVay W. P. Promotion of a viable neointima. Vasc Surg. 1969 Dec;3(4):243–249. doi: 10.1177/153857446900300404. [DOI] [PubMed] [Google Scholar]
  21. Soyer T., Lempinen M., Cooper P., Norton L., Eiseman B. A new venous prosthesis. Surgery. 1972 Dec;72(6):864–872. [PubMed] [Google Scholar]
  22. Sparks C. H. Die-grown reinforced arterial grafts: observations on long-term animal grafts and clinical experience. Ann Surg. 1970 Nov;172(5):787–794. doi: 10.1097/00000658-197011000-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WESOLOWSKI S. A., FRIES C. C., DOMINGO R. T., LIEBIG W. J., SAWYER P. N. The compound prosthetic vascular graft: a pathologic survey. Surgery. 1963 Jan;53:19–44. [PubMed] [Google Scholar]
  24. WESOLOWSKI S. A., FRIES C. C., KARLSON K. E., DE BAKEY M., SAWYER P. N. Porosity: primary determinant of ultimate fate of synthetic vascular grafts. Surgery. 1961 Jul;50:91–96. [PubMed] [Google Scholar]
  25. Wesolowski S. A., Fries C. C., McMahon J. D., Martinez A. Evaluation of a new vascular prosthesis with optimal specifications. Surgery. 1966 Jan;59(1):40–56. [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES