Abstract
The study was designed to establish where significant correlations exist in a variety of metabolic substrates and hormone mediators in patients sustaining thermal injury. The factors studied were insulin, human growth hormone, cortisol, glucagon, free fatty acid, triglyceride and glucose. Incorporated into this design was an evaluation of the impact of quantitated severity of injury upon these correlations. In patients sustaining a low severity of injury (Probability of death (p = 2.2 to 33.9) there appeared a loss of glucose regulation in conjunction with insulin resistance without significant interplay of other factors studied. In contrast, patients sustaining high severity injury (p = 46.9 to 100) evidenced correlations between glucagon and glucose (negative), cortisol and free fatty acid indicating a significant role of hyperglucagonemia in these patients. A discriminant function analysis was employed to incorporate all significant variables into a probability model. Only insulin, glucose and glucagon appeared in the optimal classification equation.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AZARNOFF D. L. Micromethod for the determination of serum lipids. J Lab Clin Med. 1962 Aug;60:331–338. [PubMed] [Google Scholar]
- Allison S. P., Hinton P., Chamberlain M. J. Intravenous glucose-tolerance, insulin, and free-fatty-acid levels in burned patients. Lancet. 1968 Nov 23;2(7578):1113–1116. doi: 10.1016/s0140-6736(68)91581-x. [DOI] [PubMed] [Google Scholar]
- BIRKE G., DUNER H., LILJEDAHL S. O., PERNOW B., PLANTIN L. O., TROELL L. Histamine, catechol amines and adrenocortical steroids in burns. Acta Chir Scand. 1958 Jan 31;114(2):87–98. [PubMed] [Google Scholar]
- Birke G., Carlson L. A., von Euler U. S., Liljedahl S. O., Plantin L. O. Studies on burns. XII. Lipid metabolism, catecholamine excretion, basal metabolic rate, and water loss during treatment of burns with warm dry air. Acta Chir Scand. 1972;138(4):321–333. [PubMed] [Google Scholar]
- CARLSON L. A., LILJEDAHL S. O. Lipid metabolism and trauma. II. Studies on the effect of nicotinic acid on norepinephrine induced fatty liver. Acta Med Scand. 1963 Jun;173:787–791. [PubMed] [Google Scholar]
- CARLSON L. A., LILJEDAHL S. O., WIRSEN C. BLOOD AND TISSUE CHANGES IN THE DOG DURING AND AFTER EXCESSIVE FREE FATTY ACID MOBILIZATION. A BIOCHEMICAL AND MORPHOLOGICAL STUDY. Acta Med Scand. 1965 Jul;178:81–102. doi: 10.1111/j.0954-6820.1965.tb04253.x. [DOI] [PubMed] [Google Scholar]
- Cope O., Nathanson I. T., Rourke G. M., Wilson H. METABOLIC OBSERVATIONS. Ann Surg. 1943 Jun;117(6):937–958. [PMC free article] [PubMed] [Google Scholar]
- Cuthbertson D. P. The disturbance of metabolism produced by bony and non-bony injury, with notes on certain abnormal conditions of bone. Biochem J. 1930;24(4):1244–1263. doi: 10.1042/bj0241244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOODALL M., STONE C., HAYNES B. W., Jr Urinary output of adrenaline and noradrenaline in severe thermal burns. Ann Surg. 1957 Apr;145(4):479–487. doi: 10.1097/00000658-195704000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gump F. E., Long C., Killian P., Kinney J. M. Studies of glucose intolerance in septic injured patients. J Trauma. 1974 May;14(5):378–388. doi: 10.1097/00005373-197405000-00004. [DOI] [PubMed] [Google Scholar]
- Hanson E. L., Brennan M. F., O'Connell R. C., Moore F. D. Response of glucose, insulin, free fatty acid, and human growth hormone to norepinephrine and hemorrhage in normal man. Ann Surg. 1973 Apr;177(4):453–457. doi: 10.1097/00000658-197304000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
- Hiebert J. M., Celik Z., Soeldner J. S., Egdahl R. H. Insulin response to hemorrhagic shock in the intact and adrenalectomized primate. Am J Surg. 1973 Apr;125(4):501–507. doi: 10.1016/0002-9610(73)90090-1. [DOI] [PubMed] [Google Scholar]
- Meek J. C., Stoskopf M. M., Bolinger R. E. Optimization of radioimmunoassay for human growth hormone by the charcoal-dextran technique. Clin Chem. 1970 Oct;16(10):845–848. [PubMed] [Google Scholar]
- Murphy B. E. Some studies of the protein-binding of steroids and their application to the routine micro and ultramicro measurement of various steroids in body fluids by competitive protein-binding radioassay. J Clin Endocrinol Metab. 1967 Jul;27(7):973–990. doi: 10.1210/jcem-27-7-973. [DOI] [PubMed] [Google Scholar]
- Nixon J. R., Brock-Utne J. G. Free fatty acid and arterial oxygen changes following major injury: a correlation between hypoxemia and increased free fatty acid levels. J Trauma. 1978 Jan;18(1):23–26. doi: 10.1097/00005373-197801000-00004. [DOI] [PubMed] [Google Scholar]
- Orton C. I., Segal A. W., Bloom S. R., Clarke J. Hypersecretion of glucagon and gastrin in severely burnt patients. Br Med J. 1975 Apr 26;2(5964):170–172. doi: 10.1136/bmj.2.5964.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shuck J. M., Eaton P., Shuck L. W., Wachtel T. L., Schade D. S. Dynamics of insulin and glucagon secretions in severely burned patients. J Trauma. 1977 Sep;17(9):706–713. doi: 10.1097/00005373-197709000-00007. [DOI] [PubMed] [Google Scholar]
- Shuck L. W., Eaton R. P., Shuck J. M. Glucagon, insulin, and glucose relationships in severely burned patients. Surg Forum. 1975;26:39–42. [PubMed] [Google Scholar]
- Turinsky J., Saba T. M., Scovill W. A., Chesnut T. Dynamics of insulin secretion and resistance after burns. J Trauma. 1977 May;17(5):344–350. doi: 10.1097/00005373-197705000-00002. [DOI] [PubMed] [Google Scholar]
- Wachtel T. L., Shuck J. M., Schade D., Eaton R. P., Shuck L. W. Hyperglucagonemia and hepatic ketogenesis in burned swine. J Trauma. 1978 Apr;18(4):248–253. doi: 10.1097/00005373-197804000-00004. [DOI] [PubMed] [Google Scholar]
- Wilmore D. W. Impaired gluconeogenesis in extensively injured patients with gram-negative bacteremia. Am J Clin Nutr. 1977 Aug;30(8):1355–1356. doi: 10.1093/ajcn/30.8.1355. [DOI] [PubMed] [Google Scholar]
- Wilmore D. W., Lindsey C. A., Moyland J. A., Faloona G. R., Pruitt B. A., Unger R. H. Hyperglucagonaemia after burns. Lancet. 1974 Jan 19;1(7847):73–75. doi: 10.1016/s0140-6736(74)92290-9. [DOI] [PubMed] [Google Scholar]
- Wilmore D. W., Long J. M., Mason A. D., Jr, Skreen R. W., Pruitt B. A., Jr Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg. 1974 Oct;180(4):653–669. doi: 10.1097/00000658-197410000-00031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilmore D. W., Mason A. D., Jr, Pruitt B. A., Jr Insulin response to glucose in hypermetabolic burn patients. Ann Surg. 1976 Mar;183(3):314–320. doi: 10.1097/00000658-197603000-00018. [DOI] [PMC free article] [PubMed] [Google Scholar]