Abstract
1. The electrical activity of Cardiac Purkinje fibres was reconstructed using a mathematical model of the membrane current. The individual components of ionic curent were described by equations which wee based as closely as possible on previous experiments using the voltage clamp technique. 2. Membrane action potentials and pace-maker activity were calculated and compared with time course of underlying changes in two functionally distinct outeard currents, iX1 and iK2. 3. The repolarization of the theoretical action potential is triggered by the onset of iX1, which becomes activated over the plateau range of potentials. iK2 also activates during the plateau but does not play a controlling role in the repolarization. Hwever, iK2 does govern the slow pace-maker depolarization through its subsequent deactivation at negative potentials. 4. The individual phases of the calculated action potential and their 'experimental' modifications were compared with published records. The upstroke is generated by a Hodgkin-Huxley type sodium conductance (gNa), and rises with a maximum rate of 478 V/sec, somewhat less than experimentally observed values ( up to 800 V/sec). The discrepancy is discussed in relation to experimental attempts at measuring gNa. 5. The ole of the transient outward chloride current (called igr) was studied in calculations of the rapid phase of repolarization and 'notch' configuration...
Full text
PDF![1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/5dc644b17d97/jphysiol00882-0029.png)
![2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/216fcf53c5e9/jphysiol00882-0030.png)
![3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/e4cd1a10391f/jphysiol00882-0031.png)
![4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/6de684dc6c77/jphysiol00882-0032.png)
![5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/ade11314e5a5/jphysiol00882-0033.png)
![6](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/7365bf8c8818/jphysiol00882-0034.png)
![7](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/7e03e7624174/jphysiol00882-0035.png)
![8](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/6315903399ac/jphysiol00882-0036.png)
![9](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/9326a0b7365b/jphysiol00882-0037.png)
![10](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/6fd1476ca968/jphysiol00882-0038.png)
![11](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/5c9c5ffe196c/jphysiol00882-0039.png)
![12](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/56fef4123e1d/jphysiol00882-0040.png)
![13](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/4f76d9e33bbd/jphysiol00882-0041.png)
![14](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/26db78fb2684/jphysiol00882-0042.png)
![15](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/66807f1fb943/jphysiol00882-0043.png)
![16](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/7b81d8cbb2f9/jphysiol00882-0044.png)
![17](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/9783f204595a/jphysiol00882-0045.png)
![18](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/6facb3d49bb0/jphysiol00882-0046.png)
![19](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/470ec903d210/jphysiol00882-0047.png)
![20](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/6ad23308c2db/jphysiol00882-0048.png)
![21](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/86fd031cbb4c/jphysiol00882-0049.png)
![22](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/4f8d4fc68da4/jphysiol00882-0050.png)
![23](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/af9ea29163b2/jphysiol00882-0051.png)
![24](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/4718d0bef4ad/jphysiol00882-0052.png)
![25](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/42603e9d0029/jphysiol00882-0053.png)
![26](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/d9d19fb841d3/jphysiol00882-0054.png)
![27](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/e418ca481399/jphysiol00882-0055.png)
![28](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/870241b2530e/jphysiol00882-0056.png)
![29](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/194b014d5717/jphysiol00882-0057.png)
![30](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/08595c5014d8/jphysiol00882-0058.png)
![31](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/55a063ab46c2/jphysiol00882-0059.png)
![32](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/1f76ba2fe799/jphysiol00882-0060.png)
![33](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/1ea6ddf898ad/jphysiol00882-0061.png)
![34](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/60861744bed1/jphysiol00882-0062.png)
![35](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/18b8241337f7/jphysiol00882-0063.png)
![36](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/a152dd95c29c/jphysiol00882-0064.png)
![37](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/a05c25bb6f7f/jphysiol00882-0065.png)
![38](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/9b4687333684/jphysiol00882-0066.png)
![39](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/b125461010b6/jphysiol00882-0067.png)
![40](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/5fba28aab69b/jphysiol00882-0068.png)
![41](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/fd46f258eef0/jphysiol00882-0069.png)
![42](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/aa82df841560/jphysiol00882-0070.png)
![43](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/7af5ce81f729/jphysiol00882-0071.png)
![44](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/553b26dd0c62/jphysiol00882-0072.png)
![45](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/161771d7c359/jphysiol00882-0073.png)
![46](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/739c8bae1b59/jphysiol00882-0074.png)
![47](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/aa5e4d7bed58/jphysiol00882-0075.png)
![48](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/1577c67da765/jphysiol00882-0076.png)
![49](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/73952e771067/jphysiol00882-0077.png)
![50](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/1ea891892d04/jphysiol00882-0078.png)
![51](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/ecdafceb1d1d/jphysiol00882-0079.png)
![52](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/ef1ecf9f4a50/jphysiol00882-0080.png)
![53](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/41a2cb9b3852/jphysiol00882-0081.png)
![54](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/59ce95fcc09f/jphysiol00882-0082.png)
![55](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/0ad45a31e954/jphysiol00882-0083.png)
![56](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/0cdfab12eaf1/jphysiol00882-0084.png)
![57](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/4b97f6aa6141/jphysiol00882-0085.png)
![58](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/3e755c27a7fe/jphysiol00882-0086.png)
![59](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f8/1348375/087521467336/jphysiol00882-0087.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADELMAN W. J., TAYLOR R. E. Leakage current rectification in the squid giant axon. Nature. 1961 Jun 3;190:883–885. doi: 10.1038/190883a0. [DOI] [PubMed] [Google Scholar]
- Adrian R. H., Chandler W. K., Hodgkin A. L. Voltage clamp experiments in striated muscle fibres. J Physiol. 1970 Jul;208(3):607–644. doi: 10.1113/jphysiol.1970.sp009139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adrian R. H., Peachey L. D. Reconstruction of the action potential of frog sartorius muscle. J Physiol. 1973 Nov;235(1):103–131. doi: 10.1113/jphysiol.1973.sp010380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adrian R. H. Rectification in muscle membrane. Prog Biophys Mol Biol. 1969;19(2):339–369. [PubMed] [Google Scholar]
- Aronson R. S., Cranefield P. F. The electrical activity of canine cardiac Purkinje fibers in sodium-free, calcium-rich solutions. J Gen Physiol. 1973 Jun;61(6):786–808. doi: 10.1085/jgp.61.6.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOULPAEP E. PERMEABILITY OF HEART MUSCLE TO CHOLINE. Arch Int Physiol Biochim. 1963 Aug;71:623–625. [PubMed] [Google Scholar]
- Beeler G. W., Jr, Reuter H. Voltage clamp experiments on ventricular myocarial fibres. J Physiol. 1970 Mar;207(1):165–190. doi: 10.1113/jphysiol.1970.sp009055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosteels S., Carmeliet E. Estimation of intracellular Na concentration and transmembrane Na flux in cardiac Purkyne fibres. Pflugers Arch. 1972;336(1):35–47. doi: 10.1007/BF00589140. [DOI] [PubMed] [Google Scholar]
- Bosteels S., Vleugels A., Carmeliet E. Choline permeability in cardiac muscle cells of the cat. J Gen Physiol. 1970 May;55(5):602–619. doi: 10.1085/jgp.55.5.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brady A. J., Woodbury J. W. The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J Physiol. 1960 Dec;154(2):385–407. doi: 10.1113/jphysiol.1960.sp006586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARMELIET E. E. Chloride ions and the membrane potential of Purkinje fibres. J Physiol. 1961 Apr;156:375–388. doi: 10.1113/jphysiol.1961.sp006682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRANEFIELD P. F., HOFFMAN B. F. Propagated repolarization in heart muscle. J Gen Physiol. 1958 Mar 20;41(4):633–649. doi: 10.1085/jgp.41.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carmeliet E., Vereecke J. Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca++, Na+ and K+ conductance. Pflugers Arch. 1969;313(4):300–315. doi: 10.1007/BF00593955. [DOI] [PubMed] [Google Scholar]
- Cranefield P. F., Wit A. L., Hoffman B. F. Conduction of the cardiac impulse. 3. Characteristics of very slow conduction. J Gen Physiol. 1972 Feb;59(2):227–246. doi: 10.1085/jgp.59.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DECK K. A., KERN R., TRAUTWEIN W. VOLTAGE CLAMP TECHNIQUE IN MAMMALIAN CARDIAC FIBRES. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Jun 9;280:50–62. doi: 10.1007/BF00412615. [DOI] [PubMed] [Google Scholar]
- DECK K. A., TRAUTWEIN W. IONIC CURRENTS IN CARDIAC EXCITATION. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Jun 9;280:63–80. doi: 10.1007/BF00412616. [DOI] [PubMed] [Google Scholar]
- DODGE F. A., FRANKENHAEUSER B. Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J Physiol. 1958 Aug 29;143(1):76–90. doi: 10.1113/jphysiol.1958.sp006045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DRAPER M. H., WEIDMANN S. Cardiac resting and action potentials recorded with an intracellular electrode. J Physiol. 1951 Sep;115(1):74–94. doi: 10.1113/jphysiol.1951.sp004653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dudel J., Peper K., Rüdel R., Trautwein W. Excitatory membrane current in heart muscle (Purkinje fibers). Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;292(3):255–273. doi: 10.1007/BF00362740. [DOI] [PubMed] [Google Scholar]
- Dudel J., Peper K., Rüdel R., Trautwein W. The effect of tetrodotoxin on the membrane current in cardiac muscle (Purkinje fibers). Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(3):213–226. doi: 10.1007/BF01844101. [DOI] [PubMed] [Google Scholar]
- Dudel J., Peper K., Rüdel R., Trautwein W. The potassium component of membrane current in Purkinje fibers. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;296(4):308–327. doi: 10.1007/BF00362531. [DOI] [PubMed] [Google Scholar]
- Dudel J., Rüdel R. Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibres. Pflugers Arch. 1970;315(2):136–158. doi: 10.1007/BF00586657. [DOI] [PubMed] [Google Scholar]
- FITZHUGH R. Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J Gen Physiol. 1960 May;43:867–896. doi: 10.1085/jgp.43.5.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fozzard H. A., Gibbons W. R. Action potential and contraction of heart muscle. Am J Cardiol. 1973 Feb;31(2):182–192. doi: 10.1016/0002-9149(73)91031-x. [DOI] [PubMed] [Google Scholar]
- Fozzard H. A., Hiraoka M. The positive dynamic current and its inactivation properties in cardiac Purkinje fibres. J Physiol. 1973 Nov;234(3):569–586. doi: 10.1113/jphysiol.1973.sp010361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fozzard H. A., Schoenberg M. Strength-duration curves in cardiac Purkinje fibres: effects of liminal length and charge distribution. J Physiol. 1972 Nov;226(3):593–618. doi: 10.1113/jphysiol.1972.sp009999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freygang W. H., Trautwein W. The structural implications of the linear electrical properties of cardiac Purkinje strands. J Gen Physiol. 1970 Apr;55(4):524–547. doi: 10.1085/jgp.55.4.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEORGE E. P., JOHNSON E. A. Solutions of the Hodgkin-Huxley equations for squid axon treated with tetraethylammonium and in potassium-rich media. Aust J Exp Biol Med Sci. 1961 Jun;39:275–293. doi: 10.1038/icb.1961.28. [DOI] [PubMed] [Google Scholar]
- Gettes L. S., Morehouse N., Surawicz B. Effect of premature depolarization on the duration of action potentials in Purkinje and ventricular fibers of the moderator band of the pig heart. Role of proximity and the duration of the preceding action potential. Circ Res. 1972 Jan;30(1):55–66. doi: 10.1161/01.res.30.1.55. [DOI] [PubMed] [Google Scholar]
- HALL A. E., HUTTER O. F., NOBLE D. Current-voltage relations of Purkinje fibres in sodium-deficient solutions. J Physiol. 1963 Apr;166:225–240. doi: 10.1113/jphysiol.1963.sp007102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALL A. E., NOBLE D. TRANSIENT RESPONSES OF PURKINJE FIBRES TO NON-UNIFORM CURRENTS. Nature. 1963 Sep 28;199:1294–1295. doi: 10.1038/1991294a0. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUTTER O. F., NOBLE D. Anion conductance of cardiac muscle. J Physiol. 1961 Jul;157:335–350. doi: 10.1113/jphysiol.1961.sp006726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUTTER O. F., NOBLE D. Rectifying properties of heart muscle. Nature. 1960 Nov 5;188:495–495. doi: 10.1038/188495a0. [DOI] [PubMed] [Google Scholar]
- Haas H. G., Kern R. Potassium fluxes in voltage clamped Purkinje fibres. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;291(1):69–84. doi: 10.1007/BF00362653. [DOI] [PubMed] [Google Scholar]
- Hauswirth O., Noble D., Tsien R. W. Adrenaline: mechanism of action on the pacemaker potential in cardiac Purkinje fibers. Science. 1968 Nov 22;162(3856):916–917. doi: 10.1126/science.162.3856.916. [DOI] [PubMed] [Google Scholar]
- Hauswirth O., Noble D., Tsien R. W. Separation of the pace-maker and plateau components of delayed rectification in cardiac Purkinje fibres. J Physiol. 1972 Aug;225(1):211–235. doi: 10.1113/jphysiol.1972.sp009934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hauswirth O., Noble D., Tsien R. W. The mechanism of oscillatory activity at low membrane potentials in cardiac Purkinje fibres. J Physiol. 1969 Jan;200(1):255–265. doi: 10.1113/jphysiol.1969.sp008691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hausworth O., Noble D., Tsien R. W. The dependence of plateau currents in cardiac Purkinje fibres on the interval between action potentials. J Physiol. 1972 Apr;222(1):27–49. doi: 10.1113/jphysiol.1972.sp009786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson E. A., Lieberman M. Heart: excitation and contraction. Annu Rev Physiol. 1971;33:479–532. doi: 10.1146/annurev.ph.33.030171.002403. [DOI] [PubMed] [Google Scholar]
- McAllister R. E. Computed action potentials for Purkinje fiber membranes with resistance and capacitance in series. Biophys J. 1968 Aug;8(8):951–964. doi: 10.1016/S0006-3495(68)86530-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAllister R. E., Noble D. The effect of subthreshold potentials on the membrane current in cardiac Purkinje fibres. J Physiol. 1967 May;190(2):381–387. doi: 10.1113/jphysiol.1967.sp008216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAllister R. E., Noble D. The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J Physiol. 1966 Oct;186(3):632–662. doi: 10.1113/jphysiol.1966.sp008060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mobley B. A., Page E. The surface area of sheep cardiac Purkinje fibres. J Physiol. 1972 Feb;220(3):547–563. doi: 10.1113/jphysiol.1972.sp009722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore J. W., Ramon F. On numerical integration of the Hodgkin and Huxley equations for a membrane action potential. J Theor Biol. 1974 May;45(1):249–273. doi: 10.1016/0022-5193(74)90054-x. [DOI] [PubMed] [Google Scholar]
- NOBLE D. A modification of the Hodgkin--Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol. 1962 Feb;160:317–352. doi: 10.1113/jphysiol.1962.sp006849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOBLE D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature. 1960 Nov 5;188:495–497. doi: 10.1038/188495b0. [DOI] [PubMed] [Google Scholar]
- New W., Trautwein W. Inward membrane currents in mammalian myocardium. Pflugers Arch. 1972;334(1):1–23. doi: 10.1007/BF00585997. [DOI] [PubMed] [Google Scholar]
- Noble D. Conductance mechanisms in excitable cells. Biomembranes. 1972;3:427–447. doi: 10.1007/978-1-4684-0961-1_30. [DOI] [PubMed] [Google Scholar]
- Noble D., Hall A. E. The Conditions for Initiating "All-or-Nothing" Repolarization in Cardiac Muscle. Biophys J. 1963 Jul;3(4):261–274. doi: 10.1016/s0006-3495(63)86820-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble D. The relation of Rushton's 'liminal length' for excitation to the resting and active conductances of excitable cells. J Physiol. 1972 Oct;226(2):573–591. doi: 10.1113/jphysiol.1972.sp009998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble D., Tsien R. W. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol. 1969 Jan;200(1):205–231. doi: 10.1113/jphysiol.1969.sp008689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble D., Tsien R. W. Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current. J Physiol. 1969 Jan;200(1):233–254. doi: 10.1113/jphysiol.1969.sp008690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble D., Tsien R. W. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol. 1968 Mar;195(1):185–214. doi: 10.1113/jphysiol.1968.sp008454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OTSUKA M. Die Wirkung von Adrenalin auf Purkinje-Fasern von Säugetierherzen. Pflugers Arch. 1958;266(5):512–517. doi: 10.1007/BF00362255. [DOI] [PubMed] [Google Scholar]
- Peper K., Trautwein W. A membrane current related to the plateau of the action potential of Purkinje fibers. Pflugers Arch. 1968;303(2):108–123. doi: 10.1007/BF00592629. [DOI] [PubMed] [Google Scholar]
- Peper K., Trautwein W. A note on the pacemaker current in Purkinje fibers. Pflugers Arch. 1969 Jun 19;309(4):356–361. doi: 10.1007/BF00587758. [DOI] [PubMed] [Google Scholar]
- Reuter H. Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol. 1973;26:1–43. doi: 10.1016/0079-6107(73)90016-3. [DOI] [PubMed] [Google Scholar]
- Reuter H. Slow inactivation of currents in cardiac Purkinje fibres. J Physiol. 1968 Jul;197(1):233–253. doi: 10.1113/jphysiol.1968.sp008557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuter H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J Physiol. 1967 Sep;192(2):479–492. doi: 10.1113/jphysiol.1967.sp008310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rougier O., Vassort G., Garnier D., Gargouil Y. M., Coraboeuf E. Existence and role of a slow inward current during the frog atrial action potential. Pflugers Arch. 1969;308(2):91–110. doi: 10.1007/BF00587018. [DOI] [PubMed] [Google Scholar]
- Sommer J. R., Johnson E. A. Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol. 1968 Mar;36(3):497–526. doi: 10.1083/jcb.36.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TRAUTWEIN W., SCHMIDT R. F. [On the membrane effect of adrenalin on the myocardial fiber]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;271:715–726. [PubMed] [Google Scholar]
- Temte J. V., Davis L. D. Effect of calcium concentration on the transmembrane potentials of Purkinje fibers. Circ Res. 1967 Jan;20(1):32–44. doi: 10.1161/01.res.20.1.32. [DOI] [PubMed] [Google Scholar]
- Tsien R. W. Effects of epinephrine on the pacemaker potassium current of cardiac Purkinje fibers. J Gen Physiol. 1974 Sep;64(3):293–319. doi: 10.1085/jgp.64.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsien R. W., Giles W., Greengard P. Cyclic AMP mediates the effects of adrenaline on cardiac purkinje fibres. Nat New Biol. 1972 Dec 6;240(101):181–183. doi: 10.1038/newbio240181a0. [DOI] [PubMed] [Google Scholar]
- Vassalle M. Analysis of cardiac pacemaker potential using a "voltage clamp" technique. Am J Physiol. 1966 Jun;210(6):1335–1341. doi: 10.1152/ajplegacy.1966.210.6.1335. [DOI] [PubMed] [Google Scholar]
- Vassalle M., Barnabei O. Norepinephrine and potassium fluxes in cardiac Purkinje fibers. Pflugers Arch. 1971;322(4):287–303. doi: 10.1007/BF00587747. [DOI] [PubMed] [Google Scholar]
- Vassalle M. Electrogenic suppression of automaticity in sheep and dog purkinje fibers. Circ Res. 1970 Sep;27(3):361–377. doi: 10.1161/01.res.27.3.361. [DOI] [PubMed] [Google Scholar]
- Vitek M., Trautwein W. Slow inward current and action potential in cardiac Purkinje fibres. The effect of Mn plus,plus-ions. Pflugers Arch. 1971;323(3):204–218. doi: 10.1007/BF00586384. [DOI] [PubMed] [Google Scholar]
- WEIDMANN S. ALLGEMEINE ELEKTROPHYSIOLOGIE BEI STILLSTAND UND WIEDEREINSETZEN DER HERZTAETIGKEIT. Verh Dtsch Ges Kreislaufforsch. 1964;30:1–10. [PubMed] [Google Scholar]
- WEIDMANN S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol. 1951 Oct 29;115(2):227–236. doi: 10.1113/jphysiol.1951.sp004667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582. doi: 10.1113/jphysiol.1955.sp005379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIDMANN S. The electrical constants of Purkinje fibres. J Physiol. 1952 Nov;118(3):348–360. doi: 10.1113/jphysiol.1952.sp004799. [DOI] [PMC free article] [PubMed] [Google Scholar]