Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1975 Sep;251(1):197–216. doi: 10.1113/jphysiol.1975.sp011087

Trichromatic colour opponency in ganglion cells of the rhesus monkey retina.

F M De Monasterio, P Gouras, D J Tolhurst
PMCID: PMC1348382  PMID: 810577

Abstract

Two hundred and eleven colour-opponent ganglion cells were studied in the central 10 degrees of the retina of the rhesus monkey, to determine the inputs which they were receiving from different cone mechanisms. Spectral-sensitivity measurements in the presence of neutral and coloured back-grounds showed that 24% of these cells appeared to receive input from all three cone mechanisms. 2. In 3% of the cells, the red-sensitive cone mechanism opposed the blue- and green-sensitive ones. In 18% of the cells, the blue-sensitive cone mechanism opposed the green- and red-sensitive ones. In 3% of the cells, the green-sensitive cone mechanism opposed the blue- and red-sensitive ones. 3. In 12% of the cells receiving opponent green- and red-sensitive cone inputs, responses from the beta-band of the red-sensitive cone mechanism could be detected and distinguished from blue-sensitive cone input. 4. All cells receiving blue-sensitive cone input appeared to be trichromatic. The retinal distribution of cells with trichromatic input and that of cells with beta-band responses seemed to parallel the availability of blue-sensitive cones in the retinal area being considered. 5. The results indicate that trichromatic interactions in the macaque visual system begin in the retina.

Full text

PDF
197

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramov I. Further analysis of the responses of LGN cells. J Opt Soc Am. 1968 Apr;58(4):574–579. doi: 10.1364/josa.58.000574. [DOI] [PubMed] [Google Scholar]
  2. BROWN P. K., WALD G. VISUAL PIGMENTS IN SINGLE RODS AND CONES OF THE HUMAN RETINA. DIRECT MEASUREMENTS REVEAL MECHANISMS OF HUMAN NIGHT AND COLOR VISION. Science. 1964 Apr 3;144(3614):45–52. doi: 10.1126/science.144.3614.45. [DOI] [PubMed] [Google Scholar]
  3. Beauchamp R. D., Lovasik J. V. Blue mechanism response of single goldfish optic fibers. J Neurophysiol. 1973 Sep;36(5):925–939. doi: 10.1152/jn.1973.36.5.925. [DOI] [PubMed] [Google Scholar]
  4. Daw N. W. Neurophysiology of color vision. Physiol Rev. 1973 Jul;53(3):571–611. doi: 10.1152/physrev.1973.53.3.571. [DOI] [PubMed] [Google Scholar]
  5. De Monasterio F. M., Gouras P. Functional properties of ganglion cells of the rhesus monkey retina. J Physiol. 1975 Sep;251(1):167–195. doi: 10.1113/jphysiol.1975.sp011086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Monasterio F. M., Gouras P., Tolhurst D. J. Concealed colour opponency in ganglion cells of the rhesus monkey retina. J Physiol. 1975 Sep;251(1):217–229. doi: 10.1113/jphysiol.1975.sp011088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Valois R. L., Abramov I., Jacobs G. H. Analysis of response patterns of LGN cells. J Opt Soc Am. 1966 Jul;56(7):966–977. doi: 10.1364/josa.56.000966. [DOI] [PubMed] [Google Scholar]
  8. De Valois R. L. Analysis and coding of color vision in the primate visual system. Cold Spring Harb Symp Quant Biol. 1965;30:567–579. doi: 10.1101/sqb.1965.030.01.055. [DOI] [PubMed] [Google Scholar]
  9. Dow B. M. Functional classes of cells and their laminar distribution in monkey visual cortex. J Neurophysiol. 1974 Sep;37(5):927–946. doi: 10.1152/jn.1974.37.5.927. [DOI] [PubMed] [Google Scholar]
  10. Gouras P. Identification of cone mechanisms in monkey ganglion cells. J Physiol. 1968 Dec;199(3):533–547. doi: 10.1113/jphysiol.1968.sp008667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gouras P. The effects of light-adaptation on rod and cone receptive field organization of monkey ganglion cells. J Physiol. 1967 Oct;192(3):747–760. doi: 10.1113/jphysiol.1967.sp008328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gouras P. Trichromatic mechanisms in single cortical neurons. Science. 1970 Apr 24;168(3930):489–492. doi: 10.1126/science.168.3930.489. [DOI] [PubMed] [Google Scholar]
  13. MARKS W. B., DOBELLE W. H., MACNICHOL E. F., Jr VISUAL PIGMENTS OF SINGLE PRIMATE CONES. Science. 1964 Mar 13;143(3611):1181–1183. doi: 10.1126/science.143.3611.1181. [DOI] [PubMed] [Google Scholar]
  14. Marrocco R. T. Responses of monkey optic tract fibers to monochromatic lights. Vision Res. 1972 Jun;12(6):1167–1174. doi: 10.1016/0042-6989(72)90104-6. [DOI] [PubMed] [Google Scholar]
  15. Padmos P., Norren D. V. Cone systems interaction in single neurons of the lateral geniculate nucleus of the macaque. Vision Res. 1975 May;15(5):617–619. doi: 10.1016/0042-6989(75)90311-9. [DOI] [PubMed] [Google Scholar]
  16. Wald G. Blue-blindness in the normal fovea. J Opt Soc Am. 1967 Nov;57(11):1289–1301. doi: 10.1364/josa.57.001289. [DOI] [PubMed] [Google Scholar]
  17. Wiesel T. N., Hubel D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966 Nov;29(6):1115–1156. doi: 10.1152/jn.1966.29.6.1115. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES