Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1975 Sep;250(3):613–631. doi: 10.1113/jphysiol.1975.sp011073

The relative importance of central nervous catecholaminergic and cholinergic mechanisms in drinking in response to antiotensin and other thirst stimuli.

J T Fitzsimons, P E Setler
PMCID: PMC1348396  PMID: 240934

Abstract

1. Intracranial or subcutaneous doses of atropine or atropine methyl nitrate that were fully effective at preventing drinking in response to intracranial carbachol did not block angiotensin-induced drinking. 2. The nicotinic antagonist dihydro-beta-erythroidine given intracranially affected neither angiotensin- nor carbachol-induced drinking. 3. The dopaminergic antagonists haloperidol and spiroperidol injected intracranially blocked angiotensin-induced drinking but did not affect carbachol-induced drinking. 4. Angiotensin- and carbachol-induced drinking were unaffected by alpha- or beta-adrenergic antagonists except at toxic doses. 5. Destruction of catecholaminergic neurones with 6-hydroxydopamine markedly reduced angiotensin-induced drinking, but had relatively little effect on carbachol-induced drinking. 6. Intracranial haloperidol reduced the amount of water drunk in response to overnight deprivation of water, but did not affect feeding in response to overnight starvation or to intracranial noradrenaline. 7. Drinking following overnight water deprivation was unaffected by intracranial alpha- or beta-adrenergic antagonists. 8. Preventing dopaminergic transmission with intracranial haloperidol decreased the water to food ratio of the rat's intake after overnight starvation, whereas increasing the dopamine levels with the combination of FLA-63 and L-DOPA increased the ratio. 9. Intraventricular dopamine in large amounts caused the water-replete rat to drink. 10. It is concluded that among the many functions of dopaminergic systems in the brain is a role in the control of water intake, and that these systems participate in an important way in drinking in response to angiotensin.

Full text

PDF
613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andén N. E., Atack C. V., Svensson T. H. Release of dopamine from central noradrenaline and dopamine nerves induced by a dopamine-beta-hydroxylase inhibitor. J Neural Transm. 1973;34(2):93–100. doi: 10.1007/BF01244662. [DOI] [PubMed] [Google Scholar]
  2. Andén N. E., Butcher S. G., Corrodi H., Fuxe K., Ungerstedt U. Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur J Pharmacol. 1970;11(3):303–314. doi: 10.1016/0014-2999(70)90006-3. [DOI] [PubMed] [Google Scholar]
  3. Blass E. M., Chapman H. W. An evaluation of the contribution of cholinergic mechanism to thirst. Physiol Behav. 1971 Nov;7(5):679–686. doi: 10.1016/0031-9384(71)90131-4. [DOI] [PubMed] [Google Scholar]
  4. Block M. L., Fisher A. E. Anticholinergic central blockade of salt-aroused and deprivation-induced drinking. Physiol Behav. 1970 Apr;5(4):525–527. doi: 10.1016/0031-9384(70)90261-1. [DOI] [PubMed] [Google Scholar]
  5. Elie R., Panisset J. C. Effect of angiotensin and atropine on the spontaneous release of acetylcholine from cat cerebral cortex. Brain Res. 1970 Jan 20;17(2):297–305. doi: 10.1016/0006-8993(70)90084-3. [DOI] [PubMed] [Google Scholar]
  6. Epstein A. N., Fitzsimons J. T., Rolls B. J. Drinking induced by injection of angiotensin into the rain of the rat. J Physiol. 1970 Sep;210(2):457–474. doi: 10.1113/jphysiol.1970.sp009220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evetts K. D., Fitzsimons J. T., Setler P. E. Eating caused by 6-hydroxydopamine-induced release of noradrenaline in the diencephalon of the rat. J Physiol. 1972 May;223(1):35–47. doi: 10.1113/jphysiol.1972.sp009832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fitzsimons J. T., Setler P. E. Catecholaminergic mechanisms in angiotensin-induced drinking. J Physiol. 1971 Oct;218 (Suppl):43P–44P. [PubMed] [Google Scholar]
  9. Giardina A. R., Fisher A. E. Effect of atropine on drinking induced by carbachol, angiotensin and isoproterenol. Physiol Behav. 1971 Oct;7(4):653–655. doi: 10.1016/0031-9384(71)90123-5. [DOI] [PubMed] [Google Scholar]
  10. Leibowitz S. F. Hypothalamic alpha- and beta-adrenergic systems regulate both thirst and hunger in the rat. Proc Natl Acad Sci U S A. 1971 Feb;68(2):332–334. doi: 10.1073/pnas.68.2.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levy J. V., Richards V. Inotropic and chronotropic effects of a series of beta-adrenergic blocking drugs: some structure-activity relationships. Proc Soc Exp Biol Med. 1966 Jun;122(2):373–379. doi: 10.3181/00379727-122-31138. [DOI] [PubMed] [Google Scholar]
  12. Lish P. M., Weikel J. H., Dungan K. W. Pharmacological and toxicological properties of two new beta-adrenergic receptor antagonists. J Pharmacol Exp Ther. 1965 Aug;149(2):161–173. [PubMed] [Google Scholar]
  13. Myers R. D., Hall G. H., Rudy T. A. Drinking in the monkey evoked by nicotine or angiotensin II microinjected in hypothalamic and mesencephalic sites. Pharmacol Biochem Behav. 1973 Jan-Feb;1(1):15–22. doi: 10.1016/0091-3057(73)90049-x. [DOI] [PubMed] [Google Scholar]
  14. Palaic D., Khairallah P. A. Inhibition of norepinephrine re-uptake by angiotensin in brain. J Neurochem. 1968 Oct;15(10):1195–1202. doi: 10.1111/j.1471-4159.1968.tb06837.x. [DOI] [PubMed] [Google Scholar]
  15. Palaić D., Khairallah P. A. Effect of angiotensin on uptake and release of norepinephrine by brain. Biochem Pharmacol. 1967 Dec;16(12):2291–2298. doi: 10.1016/0006-2952(67)90216-x. [DOI] [PubMed] [Google Scholar]
  16. Peres V. L., Gentil C. G., Graeff F. G., Covian M. R. Antagonism of the dipsogenic action of intraseptal angiotensin II in the rat. Pharmacol Biochem Behav. 1974 Sep-Oct;2(5):597–602. doi: 10.1016/0091-3057(74)90026-4. [DOI] [PubMed] [Google Scholar]
  17. STEIN L., SEIFTER J. Muscarinic synapses in the hypothalamus. Am J Physiol. 1962 Apr;202:751–756. doi: 10.1152/ajplegacy.1962.202.4.751. [DOI] [PubMed] [Google Scholar]
  18. Severs W. B., Summy-Long J., Taylor J. S., Connor J. D. A central effect of angiotensin: release of pituitary pressor material. J Pharmacol Exp Ther. 1970 Jul;174(1):27–34. [PubMed] [Google Scholar]
  19. Strauss H. C., Bigger J. T., Jr, Hoffman B. F. Electrophysiologial and beta-receptor blocking effects of MJ 1999 on dog and rabbit cardiac tissue. Circ Res. 1970 Jun;26(6):661–678. doi: 10.1161/01.res.26.6.661. [DOI] [PubMed] [Google Scholar]
  20. Swanson L. W., Marshall G. R., Needleman P., Sharpe L. G. Characterization of central angiotensin II receptors involved in the elicitation of drinking in the rat. Brain Res. 1973 Jan 30;49(2):441–446. doi: 10.1016/0006-8993(73)90438-1. [DOI] [PubMed] [Google Scholar]
  21. Uretsky N. J., Iversen L. L. Effects of 6-hydroxydopamine on catecholamine containing neurones in the rat brain. J Neurochem. 1970 Feb;17(2):269–278. doi: 10.1111/j.1471-4159.1970.tb02210.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES