Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1975 Oct;252(1):59–78. doi: 10.1113/jphysiol.1975.sp011134

The aortic arch baroreceptor response to static and dynamic stretches in an isolated aorta-depressor nerve preparation of cats in vitro.

J O Arndt, A Dörrenhaus, H Wiecken
PMCID: PMC1348468  PMID: 172626

Abstract

1. The aortic arch baroreceptors of cats were studied in an isolated aortic arch-depressor nerve preparation in vitro to analyse their transmission properties. 2. Sinusoidal length changes of varying amplitudes (0-34-1-2 mm) and frequencies (1-10 Hz) at a given pre-stretch were imposed on the isolated receptor zone to quantitate the velocity sensitivity of these receptors and to test the linearity of the system. 3. The receptor response was evaluated from the spike activity of single fibres of the depressor nerve in number of spikes per stimulus period, average discharge rate, instantaneous frequency, and phase angle between forcing function and instantaneous frequency. 4. The static response is characterized by a threshold, saturation range, and a relatively large linear part between these two non-linearities. 5. The aortic receptors exhibit rate sensitivity. Depending on the stimulus amplitude and frequency the phase angles between the forcing function and the instantaneous frequency ranged from -14 to -68 degrees. 6. The average discharge rate (spikes/sec) is sensitive to stimulus amplitude but not to stimulus frequency at near-threshold operation; in the linear part of the static response curve, the receptor response becomes independent of the stimulus mode. 7. The baroreceptors of the aorta share many properties with other mechanoreceptors of different species and organ systems, particularly with those of the rest of the circulation. They exhibit static and to some degree rate sensitivity and operate physiologically near their thresholds, i.e. the afferent arc of the baroreflexes is highly non-linear.

Full text

PDF
59

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angell James J. E. The effects of altering mean pressure, pulse pressure and pulse frequency on the impulse activity in baroreceptor fibres from the aortic arch and right subclavian artery in the rabbit. J Physiol. 1971 Apr;214(1):65–88. doi: 10.1113/jphysiol.1971.sp009419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angell James J. E. The effects of changes of extramural, 'intrathoracic', pressure on aortic arch baroreceptors. J Physiol. 1971 Apr;214(1):89–103. doi: 10.1113/jphysiol.1971.sp009420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arndt J. O., Brambring P., Hindorf K., Röhnelt M. The afferent discharge pattern of atrial mechanoreceptors in the cat during sinusoidal stretch of atrial strips in situ. J Physiol. 1974 Jul;240(1):33–52. doi: 10.1113/jphysiol.1974.sp010597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arndt J. O., Stegall H. F., Wicke H. J. Mechanics of the aorta in vivo. A radiographic approach. Circ Res. 1971 Jun;28(6):693–704. doi: 10.1161/01.res.28.6.693. [DOI] [PubMed] [Google Scholar]
  5. Biamino G., Thron H. L. Spontanrhythmik und contractiler Tonus der isolierten Rattenaorta in Abhängigkeit von der extracellulären Noradrenalin-, K+ und Ca Konzentration. Pflugers Arch. 1969;305(4):361–381. doi: 10.1007/BF00592261. [DOI] [PubMed] [Google Scholar]
  6. CLYNES M. Unidirectional rate sensitivity: a biocybernetic law of reflex and humoral systems as physiologic channels of control and communication. Ann N Y Acad Sci. 1961 Jul 28;92:946–969. doi: 10.1111/j.1749-6632.1961.tb40968.x. [DOI] [PubMed] [Google Scholar]
  7. DOUGLAS W. W., RITCHIE J. M., SCHAUMANN W. A study of the effect of the pattern of electrical stimulation of the aortic nerve on the reflex depressor responses. J Physiol. 1956 Jul 27;133(1):232–242. doi: 10.1113/jphysiol.1956.sp005581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eysel U. T., Grüsser O. J. The impulse pattern of muscle spindle afferents. A statistical analysis of the response to static and sinusoidal stimulation. Pflugers Arch. 1970;315(1):1–26. doi: 10.1007/BF00587233. [DOI] [PubMed] [Google Scholar]
  9. Franz G. N. Nonlinear rate sensitivity of the carotid sinus reflex as a consequence of static and dynamic nonlinearities in baroreceptor behavior. Ann N Y Acad Sci. 1969 Apr 21;156(2):811–824. doi: 10.1111/j.1749-6632.1969.tb14016.x. [DOI] [PubMed] [Google Scholar]
  10. Franz G. N., Scher A. M., Ito C. S. Small signal characteristics of carotid sinus baroreceptors of rabbits. J Appl Physiol. 1971 Apr;30(4):527–535. doi: 10.1152/jappl.1971.30.4.527. [DOI] [PubMed] [Google Scholar]
  11. Grüsser O. J., Thiele B. Reaktionen primärer und sekundärer Muskelspindelafferenzen auf sinusförmige mechanische Reizung. I. Variation der Sinusfrequenz. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968 Apr 23;300(3):161–184. [PubMed] [Google Scholar]
  12. Gupta P. D., Henry J. P., Sinclair R., Von Baumgarten R. Responses of atrial and aortic baroreceptors to nonhypotensive hemorrhage and to tranfusion. Am J Physiol. 1966 Dec;211(6):1429–1437. doi: 10.1152/ajplegacy.1966.211.6.1429. [DOI] [PubMed] [Google Scholar]
  13. Houk J., Simon W. Responses of Golgi tendon organs to forces applied to muscle tendon. J Neurophysiol. 1967 Nov;30(6):1466–1481. doi: 10.1152/jn.1967.30.6.1466. [DOI] [PubMed] [Google Scholar]
  14. Irisawa H., Ninomiya I. Comparison of the averaged nervous activities of aortic and carotid sinus nerves. Am J Physiol. 1967 Aug;213(2):504–510. doi: 10.1152/ajplegacy.1967.213.2.504. [DOI] [PubMed] [Google Scholar]
  15. Jahn S. A. Response of isolatemuscle spindles of the frog to sinusoidal changes in length. Acta Physiol Scand. 1969 May-Jun;76(1):131–136. doi: 10.1111/j.1748-1716.1969.tb04457.x. [DOI] [PubMed] [Google Scholar]
  16. James J. E., Daly M. de B. Comparison of the reflex vasomotor responses to separate and combined stimulation of the carotid sinus and aortic arch baroreceptors by pulsatile and non-pulsatile pressures in the dog. J Physiol. 1970 Aug;209(2):257–293. doi: 10.1113/jphysiol.1970.sp009165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kenner T. H. Neue Gesichtspunkte und Experimente zur Beschreibung und Messung der Arterienelastizität. Arch Kreislaufforsch. 1967 Oct;54(1):68–139. [PubMed] [Google Scholar]
  18. LANDGREN S. On the excitation mechanism of the carotid baroceptors. Acta Physiol Scand. 1952 Jul 17;26(1):1–34. doi: 10.1111/j.1748-1716.1952.tb00889.x. [DOI] [PubMed] [Google Scholar]
  19. LANDGREN S. The baroceptor activity in the carotid sinus nerve and the distensibility of the sinus wall. Acta Physiol Scand. 1952 Jul 17;26(1):35–56. doi: 10.1111/j.1748-1716.1952.tb00890.x. [DOI] [PubMed] [Google Scholar]
  20. LOEWENSTEIN W. R. Excitation and changes in adaptation by stretch of mechanoreceptors. J Physiol. 1956 Sep 27;133(3):588–602. doi: 10.1113/jphysiol.1956.sp005611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matthews P. B., Stein R. B. The sensitivity of muscle spindle afferents to small sinusoidal changes of length. J Physiol. 1969 Feb;200(3):723–743. doi: 10.1113/jphysiol.1969.sp008719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McKean T. A., Poppele R. E., Rosenthal N. P., Terzuolo C. A. The biologically relevant parameter in nerve impulse trains. Kybernetik. 1970 Jan;6(5):168–170. doi: 10.1007/BF00273961. [DOI] [PubMed] [Google Scholar]
  23. NEIL E. [The afferent innervation of the arterial system and the circulatory reflexes therby engendered]. Verh Dtsch Ges Kreislaufforsch. 1959;25:131–142. [PubMed] [Google Scholar]
  24. PATEL D. J., FRY D. L. IN SITU PRESSURE-RADIUS-LENGTH MEASUREMENTS IN ASCENDING AORTA OF ANESTHETIZED DOGS. J Appl Physiol. 1964 May;19:413–416. doi: 10.1152/jappl.1964.19.3.413. [DOI] [PubMed] [Google Scholar]
  25. Pelletier C. L., Clement D. L., Shepherd J. T. Comparison of afferent activity of canine aortic and sinus nerves. Circ Res. 1972 Oct;31(4):557–568. doi: 10.1161/01.res.31.4.557. [DOI] [PubMed] [Google Scholar]
  26. Poppele R. E., Bowman R. J. Quantitative description of linear behavior of mammalian muscle spindles. J Neurophysiol. 1970 Jan;33(1):59–72. doi: 10.1152/jn.1970.33.1.59. [DOI] [PubMed] [Google Scholar]
  27. Spickler J. W., Kezdi P. Dynamic response characteristics of carotid sinus baroreceptors. Am J Physiol. 1967 Feb;212(2):472–476. doi: 10.1152/ajplegacy.1967.212.2.472. [DOI] [PubMed] [Google Scholar]
  28. Stegemann J., Tibes U. Der Einfluss von Amplitude, Frequenz und Mittelwert sinusförmiger Reizdrucke an den Pressoreceptoren auf den arteriellen Mitteldruck des Hundes. Pflugers Arch. 1969;305(3):219–228. doi: 10.1007/BF00587276. [DOI] [PubMed] [Google Scholar]
  29. Thron H. L., Brechmann W., Wagner J., Keller K. Quantitative Untersuchungen über die Bedeutung der Gefässdehnungsreceptoren im Rahmen der Kreislaufhomoiostase beim wachen Menschen. I. Das Verhalten von arteriellem Blutdruck und Herzfrequenz bei abgestufter Veränderung des transmuralen Blutdrucks im Bereich des Carotissinus. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;293(1):68–99. [PubMed] [Google Scholar]
  30. Whitteridge D. Afferent nerve fibres from the heart and lungs in the cervical vagus. J Physiol. 1948 Sep 30;107(4):496–512. doi: 10.1113/jphysiol.1948.sp004294. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES