Abstract
The effects of dietary restriction on the kinetics of absorption in vivo of glucose, galactose and alpha-methyl glucoside were assessed by electrical and chemical methods in the rat jejunum. 2. The 'apparent Km', maximum absorption or Vmax (mu-mole/10 cm. 15 min) and maximum potential difference (p.d.max) were obtained for the jejunal electrogenic active transfer mechanism from the transfer p.d.s and the chemical absorption data corrected for diffusion using various graphical kinetic plots. 3. Fasting for 3 days greatly decreased the 'apparent Kms', obtained from electrical or chemical data, for all the sugars but had no effect on those for L-valine or L-methionine. Semistarvation caused a less pronounced reduction of the 'apparent Kms' for the sugars. The dietary-induced change in 'apparent Km' for glucose was also observed in the fasted hamster. One interpretation of these changes is that the affinity of the carriers for sugars increases during dietary restriction; the greater the level of restriction the greater the increase. 4. Fasting and semistarvation caused large reductions in the Vmax. These reductions were correlated with a reduced enterocyte population estimated by changes in enterocyte column size. 5. The reduction in the Vmax for galactose was mainly accounted for by the decrease in enterocyte population. In the case of glucose, other factors such as reduced enterocyte metabolism or changes in the carriers must be involved to explain the discrepancy between the large decrease in Vmax and the enterocyte column size. 6. Fasting and semi-starvation had complex, differential actions on the p.d.max for glucose, galactose and alpha-methyl glucoside. These changes did not correlate with those observed in the Vmax measured chemically. 7. A standard diet obtained from two commercial sources was found to differ greatly in its effect on the electrogenic transfer system for alpha-methyl glucoside but had no effect on those for galactose and glucose.
Full text
PDF



















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bieberdorf F. A., Morawski S., Fordtran J. S. Effect of sodium, mannitol, and magnesium on glucose, galactose, 3-O-methylglucose, and fructose absorption in the human ileum. Gastroenterology. 1975 Jan;68(1):58–66. [PubMed] [Google Scholar]
- Clarke R. M. Progress in measuring epithelial turnover in the villus of the small intestine. Digestion. 1973;8(2):161–175. doi: 10.1159/000197311. [DOI] [PubMed] [Google Scholar]
- Debnam E. S., Levin R. J. An experimental method of identifying and quantifying the active transfer electrogenic component from the diffusive component during sugar absorption measured in vivo. J Physiol. 1975 Mar;246(1):181–196. doi: 10.1113/jphysiol.1975.sp010885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond J. M. A rapid method for determining voltage-concentration relations across membranes. J Physiol. 1966 Mar;183(1):83–100. doi: 10.1113/jphysiol.1966.sp007852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietschy J. M. Difficulties in determining valid rate constants for transport and metabolic processes. Gastroenterology. 1970 Jun;58(6):863–874. [PubMed] [Google Scholar]
- Dixon M. The graphical determination of K m and K i . Biochem J. 1972 Aug;129(1):197–202. doi: 10.1042/bj1290197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esposito G. Intestinal absorption of sugars in semi-starved rats. Proc Soc Exp Biol Med. 1967 Jun;125(2):452–455. doi: 10.3181/00379727-125-32117. [DOI] [PubMed] [Google Scholar]
- Fisher R. B., Gardner M. L. Dependence of intestinal glucose absorption on sodium, studied with a new arterial infusion technique. J Physiol. 1974 Aug;241(1):235–260. doi: 10.1113/jphysiol.1974.sp010651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Förster H., Hoos I. The excretion of sodium during the active absorption of glucose from the perfused small intestine of rats. Hoppe Seylers Z Physiol Chem. 1972 Jan;353(1):88–94. doi: 10.1515/bchm2.1972.353.1.88. [DOI] [PubMed] [Google Scholar]
- HOFSTEE B. H. Non-inverted versus inverted plots in enzyme kinetics. Nature. 1959 Oct 24;184:1296–1298. doi: 10.1038/1841296b0. [DOI] [PubMed] [Google Scholar]
- Honegger P., Gershon E. Further evidence for the multiplicity of carriers for free glucalogues in hamster small intestine. Biochim Biophys Acta. 1974 May 30;352(1):127–134. doi: 10.1016/0005-2736(74)90185-0. [DOI] [PubMed] [Google Scholar]
- KERSHAW T. G., NEAME K. D., WISEMAN G. The effect of semistarvation on absorption by the rat small intestine in vitro and in vivo. J Physiol. 1960 Jun;152:182–190. doi: 10.1113/jphysiol.1960.sp006480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimmich G. A. Coupling between Na+ and sugar transport in small intestine. Biochim Biophys Acta. 1973 Apr 3;300(1):31–78. doi: 10.1016/0304-4157(73)90011-7. [DOI] [PubMed] [Google Scholar]
- LEVIN R. J., NEWEY H., SMYTH D. H. THE EFFECTS OF ADRENALECTOMY AND FASTING ON INTESTINAL FUNCTION IN THE RAT. J Physiol. 1965 Mar;177:58–73. doi: 10.1113/jphysiol.1965.sp007575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levin R. J. The effects of hormones on the absorptive, metabolic and digestive functions of the small intestine. J Endocrinol. 1969 Oct;45(2):315–348. doi: 10.1677/joe.0.0450315. [DOI] [PubMed] [Google Scholar]
- Levin R. J. The intestinal absorption of some essential and non-essential amino acids in fed and fasting rats. Life Sci. 1970 Jan 22;9(2):61–68. doi: 10.1016/0024-3205(70)90245-6. [DOI] [PubMed] [Google Scholar]
- Levinson R. A., Englert E., Jr Small intestinal absorption of D-galactose and water in fasted and alloxan diabetic rats. Experientia. 1972 Sep 15;28(9):1039–1040. doi: 10.1007/BF01918658. [DOI] [PubMed] [Google Scholar]
- Menge H., Bloch R., Schaumlöffel E., Riecken E. O. Transportstudien, morphologische, morphometrische und histochemische Untersuchungen zum Verhalten der Dünndarmschleimhaut im operativ ausgeschalteten Jejunalabschnitt der Ratte. Z Gesamte Exp Med. 1970;153(1):74–90. [PubMed] [Google Scholar]
- Newey H., Sanford P. A., Smyth D. H. Effects of fasting on intestinal transfer of sugars and amino acids in vitro. J Physiol. 1970 Jul;208(3):705–724. doi: 10.1113/jphysiol.1970.sp009144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramsey D. H., Bern H. A. Stimulation by ovine prolactin of fluid transfer in everted sacs of rat small intestine. J Endocrinol. 1972 Jun;53(3):453–459. doi: 10.1677/joe.0.0530453. [DOI] [PubMed] [Google Scholar]
- Read N. W., Holdsworth C. D., Levin R. J. Electrical measurement of intestinal absorption of glucose in man. Lancet. 1974 Sep 14;2(7881):624–627. doi: 10.1016/s0140-6736(74)91946-1. [DOI] [PubMed] [Google Scholar]
- Riecken E. O., Martini G. A. The classification of abnormal small intestinal mucosal appearances. Morphology, function and diagnostic significance. Ger Med. 1973 Winter;3(3-4):120–127. [PubMed] [Google Scholar]
- Roche A. C., Bognel J. C., Bognel C., Bernier J. J. Correlation between the histological changes and glucose intestinal absorption following a single dose of 5 fluorouracil. Digestion. 1970;3(4):195–212. doi: 10.1159/000197033. [DOI] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. II. THE INTERACTION BETWEEN ACTIVE SODIUM AND ACTIVE SUGAR TRANSPORT. J Gen Physiol. 1964 Jul;47:1043–1059. doi: 10.1085/jgp.47.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shields J. W. Intestinal lymphoid tissue activity during absorption. Am J Gastroenterol. 1968 Jul;50(1):30–36. [PubMed] [Google Scholar]
- Srivastava L. M., Hübscher G. Glucose metabolism in the mucosa of the small intestine. Glycolysis in subcellular preparations from the cat and rat. Biochem J. 1966 Aug;100(2):458–466. doi: 10.1042/bj1000458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srivastava L. M., Shakespeare P., Hübscher G. Glucose metabolism in the mucosa of the small intestine. A study of hexokinase activity. Biochem J. 1968 Aug;109(1):35–42. doi: 10.1042/bj1090035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson F. A., Dietschy J. M. The intestinal unstirred layer: its surface area and effect on active transport kinetics. Biochim Biophys Acta. 1974 Aug 21;363(1):112–126. doi: 10.1016/0005-2736(74)90010-8. [DOI] [PubMed] [Google Scholar]
- Winne D. Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim Biophys Acta. 1973 Feb 27;298(1):27–31. doi: 10.1016/0005-2736(73)90005-9. [DOI] [PubMed] [Google Scholar]
