Abstract
1. If classical partial decussation exactly segregates the projections of right and left hemi-retinae on to the two optic tracts, the images of an object in central vision, nearer or further than the fixation point, should project to separate hemispheres. This would prevent the encoding of retinal disparity by binocularly driven neurones of the visual cortex.
2. It is proposed that there is a central vertical strip of retina in each eye which is represented in both hemispheres. The angular width of this strip should be exactly one half the actual range of horizontal disparities of binocular receptive fields near the central vertical meridian.
3. By recording from single neurones in the area 17/18 region in both hemispheres of a cat, it was found that there is such a strip of bilateral projection. The centres of receptive fields for units from the two hemispheres overlap in the middle of the visual field by about 1·5° and the S.D. of the distribution is about 0·5°.
4. The horizontal disparities of the centres of binocular receptive fields were measured for samples of units representing different parts of the visual field. The range of horizontal disparity for fields near the area centralis is about 2·3°, the S.D. of the distribution about 0·9°. The proposed relationship between bilateral projection and disparity coding is thus confirmed.
5. The origin of the bilateral projection is a matter of speculation, but in the cat some of it is almost certainly due to imprecision in the nature of the nasotemporal division of optic nerve fibres at the optic chiasma. A case can be made, however, that the overlap is partly due to connexions through the corpus callosum between the two occipital lobes.
6. Evidence for the importance of the callosal pathway in man is drawn from the effects on stereopsis of section of the chiasma and the callosum.
Full text
PDF


























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BISHOP P. O., KOZAK W., VAKKUR G. J. Some quantitative aspects of the cat's eye: axis and plane of reference, visual field co-ordinates and optics. J Physiol. 1962 Oct;163:466–502. doi: 10.1113/jphysiol.1962.sp006990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barlow H. B., Blakemore C., Pettigrew J. D. The neural mechanism of binocular depth discrimination. J Physiol. 1967 Nov;193(2):327–342. doi: 10.1113/jphysiol.1967.sp008360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berlucchi G., Gazzaniga M. S., Rizzolatti G. Microelectrode analysis of transfer of visual information by the corpus callosum. Arch Ital Biol. 1967 Nov;105(4):583–596. [PubMed] [Google Scholar]
- Berlucchi G., Rizzolatti G. Binocularly driven neurons in visual cortex of split-chiasm cats. Science. 1968 Jan 19;159(3812):308–310. doi: 10.1126/science.159.3812.308. [DOI] [PubMed] [Google Scholar]
- CHOUDHURY B. P., WHITTERIDGE D., WILSON M. E. THE FUNCTION OF THE CALLOSAL CONNECTIONS OF THE VISUAL CORTEX. Q J Exp Physiol Cogn Med Sci. 1965 Apr;50:214–219. doi: 10.1113/expphysiol.1965.sp001783. [DOI] [PubMed] [Google Scholar]
- DANIEL P. M., WHITTERIDGE D. The representation of the visual field on the cerebral cortex in monkeys. J Physiol. 1961 Dec;159:203–221. doi: 10.1113/jphysiol.1961.sp006803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebner F. F., Myers R. E. Distribution of corpus callosum and anterior commissure in cat and raccoon. J Comp Neurol. 1965 Jun;124(3):353–365. doi: 10.1002/cne.901240306. [DOI] [PubMed] [Google Scholar]
- GLICKSTEIN M., MILLER J., SMITH O. A., Jr LATERAL GENICULATE NUCLEUS AND CEREBRAL CORTEX: EVIDENCE FOR A CROSSED PATHWAY. Science. 1964 Jul 10;145(3628):159–161. doi: 10.1126/science.145.3628.159-a. [DOI] [PubMed] [Google Scholar]
- HUBEL D. H., WIESEL T. N. RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. J Neurophysiol. 1965 Mar;28:229–289. doi: 10.1152/jn.1965.28.2.229. [DOI] [PubMed] [Google Scholar]
- HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N. Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. J Neurophysiol. 1967 Nov;30(6):1561–1573. doi: 10.1152/jn.1967.30.6.1561. [DOI] [PubMed] [Google Scholar]
- Leicester J. Projection of the visual vertical meridian to cerebral cortex of the cat. J Neurophysiol. 1968 May;31(3):371–382. doi: 10.1152/jn.1968.31.3.371. [DOI] [PubMed] [Google Scholar]
- Nikara T., Bishop P. O., Pettigrew J. D. Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp Brain Res. 1968;6(4):353–372. doi: 10.1007/BF00233184. [DOI] [PubMed] [Google Scholar]
- Pettigrew J. D., Nikara T., Bishop P. O. Binocular interaction on single units in cat striate cortex: simultaneous stimulation by single moving slit with receptive fields in correspondence. Exp Brain Res. 1968;6(4):391–410. doi: 10.1007/BF00233186. [DOI] [PubMed] [Google Scholar]
- Stone J. The naso-temporal division of the cat's retina. J Comp Neurol. 1966 Apr;126(4):585–600. [PubMed] [Google Scholar]
- Vesbaesya C., Whitteridge D., Wilson M. E. Callosal connexions of the cortex representing the area centralis. J Physiol. 1967 Jul;191(2):79P–80P. [PubMed] [Google Scholar]
- WESTHEIMER G., TANZMAN I. J. Qualitative depth localization with diplopic images. J Opt Soc Am. 1956 Feb;46(2):116–117. doi: 10.1364/josa.46.000116. [DOI] [PubMed] [Google Scholar]
- WIESEL T. N. Receptive fields of ganglion cells in the cat's retina. J Physiol. 1960 Oct;153:583–594. doi: 10.1113/jphysiol.1960.sp006557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson M. E., Cragg B. G. Projections from the lateral geniculate nucleus in the cat and monkey. J Anat. 1967 Sep;101(Pt 4):677–692. [PMC free article] [PubMed] [Google Scholar]
