Abstract
1. The effect of dietary restriction (sufficient to produce a loss of about 32% of initial body weight) on intestinal active transport has been studied in the rat by the use of sacs of everted mid-small intestine. Eight D-sugars, four L-sugars and two D-amino acids were employed.
2. Dietary restriction enhanced the normally occurring active transport of D-galactose, 3-O-methyl-D-glucose and D-methionine. In addition, sacs of dietary-restricted small intestine were able to concentrate in the serosal fluid D-fucose, D-xylose and D-histidine, which sacs of normal rat intestine could not do. The final (1 hr) serosal/mucosal concentration ratios produced for these actively transported substances were independent of net water movement.
3. Sugars which were not concentrated in the serosal fluid of sacs of fully fed or dietary-restricted intestine were D-arabinose, D-fructose, D-glucosamine, D-mannose, L-arabinose, L-fucose, L-sorbose and L-xylose.
4. The characteristics of D-fucose and D-xylose active transport suggest that they are transported by the mechanism which actively transports D-glucose. The comparatively low content of D-glucose in dietary-restricted intestine, compared with fully fed intestine, may be part of the explanation for observable active transport of D-fucose and D-xylose by dietary-restricted sacs.
5. Thinning of the intestinal wall is believed not to be the cause of the enhanced active transport found during dietary restriction.
6. The results show that dietary-restricted rat small intestine may, at times, be more useful than fully fed rat small intestine in the study of intestinal active transport.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarado F. D-xylose active transport in the hamster small intestine. Biochim Biophys Acta. 1966 Feb 7;112(2):292–306. doi: 10.1016/0926-6585(66)90328-1. [DOI] [PubMed] [Google Scholar]
- Alvarado F. D-xylose, a substrate for the process of sugar active transport by the small intestine. Experientia. 1964 Jun 15;20(6):302–303. doi: 10.1007/BF02171060. [DOI] [PubMed] [Google Scholar]
- BLACK J. W., FISHER E. W., SMITH A. N. The effect of precursors of 5-hydroxytryptamine on gastric secretion in anaesthetized dogs. J Physiol. 1959 Apr 23;146(1):10–17. doi: 10.1113/jphysiol.1959.sp006174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BULLARD D., FARRAR J. T., INGELFINGER F. J., SMALL M. D. Effect of total body irradiation on absorption of sugars from the small intestine. Am J Physiol. 1956 Sep;186(3):549–553. doi: 10.1152/ajplegacy.1956.186.3.549. [DOI] [PubMed] [Google Scholar]
- Bogner P. H., Braham A. H., McLain P. L., Jr Glucose metabolism during ontogeny of intestinal active sugar transport in the chick. J Physiol. 1966 Nov;187(2):307–321. doi: 10.1113/jphysiol.1966.sp008091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Csáky T. Z., Ho P. M. Intestinal transport of D-xylose. Proc Soc Exp Biol Med. 1965 Nov;120(2):403–408. doi: 10.3181/00379727-120-30548. [DOI] [PubMed] [Google Scholar]
- Dowling R. H., Booth C. C. Structural and functional changes following small intestinal resection in the rat. Clin Sci. 1967 Feb;32(1):139–149. [PubMed] [Google Scholar]
- Dowling R. H., Riecken E. O., Laws J. W., Booth C. C. The intestinal response to high bulk feeding in the rat. Clin Sci. 1967 Feb;32(1):1–9. [PubMed] [Google Scholar]
- Duthie H. L., Hindmarsh J. T. The effect of amino acids on the intestinal transport of L- and D-xylose in vitro. J Physiol. 1966 Nov;187(1):195–200. doi: 10.1113/jphysiol.1966.sp008082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esposito G., Faelli A., Capraro V. Metabolism and transport phenomena in isolated intestine of normal and semistarved rats. Arch Int Physiol Biochim. 1967 Sep;75(4):601–608. doi: 10.3109/13813456709112508. [DOI] [PubMed] [Google Scholar]
- FISHER R. B., PARSONS D. S. Galactose absorption from the surviving small intestine of the rat. J Physiol. 1953 Feb 27;119(2-3):224–232. doi: 10.1113/jphysiol.1953.sp004840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faelli A., Esposito G., Capraro V. Intracellular concentration of sodium and glucose correlated with transport phenomena. Arch Sci Biol (Bologna) 1966 Jul-Sep;50(3):234–241. [PubMed] [Google Scholar]
- HUGGETT A. S., NIXON D. A. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet. 1957 Aug 24;273(6991):368–370. doi: 10.1016/s0140-6736(57)92595-3. [DOI] [PubMed] [Google Scholar]
- Hindmarsh J. T., Kilby D., Ross B., Wiseman G. Further studies on intestinal active transport during semistarvation. J Physiol. 1967 Jan;188(2):207–218. doi: 10.1113/jphysiol.1967.sp008134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hindmarsh J. T., Kilby D., Wiseman G. Effect of amino acids on sugar absorption. J Physiol. 1966 Sep;186(1):166–174. doi: 10.1113/jphysiol.1966.sp008026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JERVIS E. L., SMYTH D. H. Competition between enantiomorphs of amino acids during intestinal absorption. J Physiol. 1959 Jan 28;145(1):57–65. doi: 10.1113/jphysiol.1959.sp006126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KERSHAW T. G., NEAME K. D., WISEMAN G. The effect of semistarvation on absorption by the rat small intestine in vitro and in vivo. J Physiol. 1960 Jun;152:182–190. doi: 10.1113/jphysiol.1960.sp006480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LIN E. C., HAGIHIRA H., WILSON T. H. Specificity of the transport system for neutral amino acids in the hamster intestine. Am J Physiol. 1962 May;202:919–925. doi: 10.1152/ajplegacy.1962.202.5.919. [DOI] [PubMed] [Google Scholar]
- Lassen U. V., Csáky T. Z. Active transport of D-xylose in the isolated small intestine of the bullfrog. J Gen Physiol. 1966 May;49(5):1029–1041. doi: 10.1085/jgp.49.5.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macpherson H. T. The basic amino-acid content of proteins. Biochem J. 1946;40(4):470–481. [PMC free article] [PubMed] [Google Scholar]
- Neale R. J., Wiseman G. Active absorption of L-glucose by the dietary--restricted rat. J Physiol. 1968 Jul;197(1):32P–33P. [PubMed] [Google Scholar]
- Neale R. J., Wiseman G. Active intestinal absorption of L-glucose. Nature. 1968 May 4;218(5140):473–474. doi: 10.1038/218473a0. [DOI] [PubMed] [Google Scholar]
- Neale R. J., Wiseman G. Active transport of L-glucose by isolated small intestine of the dietary-restricted rat. J Physiol. 1968 Oct;198(3):601–611. [PMC free article] [PubMed] [Google Scholar]
- PARSONS B. J., SMYTH D. H., TAYLOR C. B. The action of phlorrhizin on the intestinal transfer of glucose and water in vitro. J Physiol. 1958 Dec 30;144(3):387–402. doi: 10.1113/jphysiol.1958.sp006109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SALOMON L. L., ALLUMS J. A., SMITH D. E. Possible carrier mechanism for the intestinal transport of D-xylose. Biochem Biophys Res Commun. 1961 Feb 24;4:123–126. doi: 10.1016/0006-291x(61)90360-6. [DOI] [PubMed] [Google Scholar]
- SOLS A. The hexokinase activity of the intestinal mucosa. Biochim Biophys Acta. 1956 Jan;19(1):144–152. doi: 10.1016/0006-3002(56)90396-1. [DOI] [PubMed] [Google Scholar]
- WILSON T. H., WISEMAN G. Metabolic activity of the small intestine of the rat and golden hamster (Mesocricetus auratus). J Physiol. 1954 Jan;123(1):126–130. doi: 10.1113/jphysiol.1954.sp005037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILSON T. H., WISEMAN G. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol. 1954 Jan;123(1):116–125. doi: 10.1113/jphysiol.1954.sp005036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WISEMAN G. Sac of everted intestine technic for study of intestinal absorption in vitro. Methods Med Res. 1961;9:287–292. [PubMed] [Google Scholar]