Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1969 Nov;205(1):179–192.1. doi: 10.1113/jphysiol.1969.sp008959

Mechanical properties of glycerinated fibres from the tymbal muscles of a Brazilian cicada

D J Aidley, D C S White
PMCID: PMC1348633  PMID: 5347716

Abstract

1. Some of the properties of glycerinated fibres from the synchronous tymbal muscles of the cicada Fidicina rana have been investigated.

2. In the presence of suitable concentrations of ATP and calcium ions, the fibres are able to perform oscillatory work when subjected to small sinusoidal length changes in the frequency range 2-30 c/s.

3. When subjected to abrupt changes in length, active fibres show a delayed increase in tension after a stretch and a delayed decrease in tension after release.

4. The muscle fibres therefore show the mechanical properties characteristic of glycerinated fibres from asychronous insect flight muscles. Some implications of this finding in relation to the evolution of asynchronous muscles are discussed.

Full text

PDF
179

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott R. H., Chaplain R. A. Preparation and properties of the contractile element of insect fibrillar muscle. J Cell Sci. 1966 Sep;1(3):311–330. doi: 10.1242/jcs.1.3.311. [DOI] [PubMed] [Google Scholar]
  2. Aidley D. J. Transient changes in isotonic shortening velocity of frog rectus abdominis muscles in potassium contracture. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):215–223. doi: 10.1098/rspb.1965.0068. [DOI] [PubMed] [Google Scholar]
  3. Ashhurst D. E. The fibrillar flight muscles of giant water-bugs: an electron-microscope study. J Cell Sci. 1967 Sep;2(3):435–444. doi: 10.1242/jcs.2.3.435. [DOI] [PubMed] [Google Scholar]
  4. Blake W. D., Jurf A. N. Renal sodium reabsorption after acute renal denervation in the rabbit. J Physiol. 1968 May;196(1):65–73. doi: 10.1113/jphysiol.1968.sp008494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Civan M. M., Podolsky R. J. Contraction kinetics of striated muscle fibres following quick changes in load. J Physiol. 1966 Jun;184(3):511–534. doi: 10.1113/jphysiol.1966.sp007929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HANSON J., HUXLEY H. E. Quantitative studies on the structure of cross-striated myofibrils. II. Investigations by biochemical techniques. Biochim Biophys Acta. 1957 Feb;23(2):250–260. doi: 10.1016/0006-3002(57)90326-8. [DOI] [PubMed] [Google Scholar]
  7. MACHIN K. E., PRINGLE J. W. The physiology of insect fibrillar muscle. III. The effect of sinusoidal changes of length on a beetle flight muscle. Proc R Soc Lond B Biol Sci. 1960 Jun 14;152:311–330. doi: 10.1098/rspb.1960.0041. [DOI] [PubMed] [Google Scholar]
  8. PODOLSKY R. J. Kinetics of muscular contraction: the approach to the steady state. Nature. 1960 Nov 19;188:666–668. doi: 10.1038/188666a0. [DOI] [PubMed] [Google Scholar]
  9. PRINGLE J. W. The mechanism of the myogenic rhythm of certain insect striated muscles. J Physiol. 1954 May 28;124(2):269–291. doi: 10.1113/jphysiol.1954.sp005106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pringle J. W. The contractile mechanism of insect fibrillar muscle. Prog Biophys Mol Biol. 1967;17:1–60. doi: 10.1016/0079-6107(67)90003-x. [DOI] [PubMed] [Google Scholar]
  11. Pringle J. W. The excitation and contraction of the flight muscles of insects. J Physiol. 1949 Mar 15;108(2):226–232. doi: 10.1113/jphysiol.1949.sp004326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Steiger G. J., Rüegg J. C. Energetics and "efficiency" in the isolated contractile machinery of an insect fibrillar muscle at various frequencies of oscillation. Pflugers Arch. 1969;307(1):1–21. doi: 10.1007/BF00589455. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES