Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1973 Feb;229(1):1–32. doi: 10.1113/jphysiol.1973.sp010123

The cerebellum as a computer: patterns in space and time.

J C Eccles
PMCID: PMC1350208  PMID: 4347742

Full text

PDF
i4

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G. I., Azzena G. B., Ono T. Contribution of the cerebro-reticulo-cerebellar pathway to the early mossy fibre response in the cerebellar cortex. Brain Res. 1972 Sep 29;44(2):670–675. doi: 10.1016/0006-8993(72)90333-2. [DOI] [PubMed] [Google Scholar]
  2. Blomfield S., Marr D. How the cerebellum may be used. Nature. 1970 Sep 19;227(5264):1224–1228. doi: 10.1038/2271224a0. [DOI] [PubMed] [Google Scholar]
  3. Eccles J. C. Circuits in the cerebellar control of movement. Proc Natl Acad Sci U S A. 1967 Jul;58(1):336–343. doi: 10.1073/pnas.58.1.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eccles J. C., Faber D. S., Murphy J. T., Sabah N. H., Táboríková H. Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. I. In mossy fibers and granule cells. Exp Brain Res. 1971 Jul 26;13(1):15–35. doi: 10.1007/BF00236428. [DOI] [PubMed] [Google Scholar]
  5. Eccles J. C., Faber D. S., Murphy J. T., Sabah N. H., Táboríková H. Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. II. In Purkyne cells. Exp Brain Res. 1971 Jul 26;13(1):36–53. [PubMed] [Google Scholar]
  6. Eccles J. C., Faber D. S., Murphy J. T., Sabah N. H., Táboríková H. Investigations on integration of mossy fiber inputs to Purkynè cells in the anterior lobe. Exp Brain Res. 1971 Jul 26;13(1):54–77. [PubMed] [Google Scholar]
  7. Eccles J. C., Provini L., Strata P., Táboríková H. Analysis of electrical potentials evoked in the cerebellar anterior lobe by stimulation of hindlimb and forelimb nerves. Exp Brain Res. 1968;6(3):171–194. doi: 10.1007/BF00235123. [DOI] [PubMed] [Google Scholar]
  8. Eccles J. C., Provini L., Strata P., Táboríková H. Topographical investigations on the climbing fiber inputs from forelimb and hindlimb afferents to the cerebellar anterior lobe. Exp Brain Res. 1968;6(3):195–215. doi: 10.1007/BF00235124. [DOI] [PubMed] [Google Scholar]
  9. Eccles J. C., Rosen I., Scheid P., Taborikova H. Cutaneous afferent responses in interpositus neurones of the cat. Brain Res. 1972 Jul 13;42(1):207–211. doi: 10.1016/0006-8993(72)90055-8. [DOI] [PubMed] [Google Scholar]
  10. Eccles J. C., Sabah N. H., Schmidt R. F., Táboríková H. Cerebellar Purkyne cell responses to cutaneous mechanoreceptors. Brain Res. 1971 Jul 23;30(2):419–424. doi: 10.1016/0006-8993(71)90094-1. [DOI] [PubMed] [Google Scholar]
  11. Eccles J. C., Sabah N. H., Schmidt R. F., Táboríková H. Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. 3. In Purkyne cells by climbing fiber input. Exp Brain Res. 1972 Oct 29;15(5):484–497. doi: 10.1007/BF00236404. [DOI] [PubMed] [Google Scholar]
  12. Eccles J. C., Sabah N. H., Schmidt R. F., Táboríková H. Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. I. In mossy fibers. Exp Brain Res. 1972;15(3):245–260. doi: 10.1007/BF00235910. [DOI] [PubMed] [Google Scholar]
  13. Eccles J. C., Sabah N. H., Schmidt R. F., Táboríková H. Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. II. In Purkyne cells by mossy fiber input. Exp Brain Res. 1972;15(3):261–277. doi: 10.1007/BF00235911. [DOI] [PubMed] [Google Scholar]
  14. Eccles J. C., Sabal N. H., Taborikova H. Responses evoked in neurons of the fastigial nucleus by cutaneous mechanoreceptors. Brain Res. 1971 Dec 24;35(2):523–527. doi: 10.1016/0006-8993(71)90493-8. [DOI] [PubMed] [Google Scholar]
  15. Eccles J. C. The development of the cerebellum of vertebrates in relation to the control of movement. Naturwissenschaften. 1969 Nov;56(11):525–534. doi: 10.1007/BF00597254. [DOI] [PubMed] [Google Scholar]
  16. Faber D. S., Murphy J. T. Axonal branching in the climbing fiber pathway to the cerebellum. Brain Res. 1969 Sep;15(1):262–267. doi: 10.1016/0006-8993(69)90328-x. [DOI] [PubMed] [Google Scholar]
  17. Ferin M., Grigorian R. A., Strata P. Mossy and climbing fibre activation in the cat cerebellum by stimulation of the labyrinth. Exp Brain Res. 1971;12(1):1–17. doi: 10.1007/BF00234413. [DOI] [PubMed] [Google Scholar]
  18. Fox C. A., Hillman D. E., Siegesmund K. A., Dutta C. R. The primate cerebellar cortex: a Golgi and electron microscopic study. Prog Brain Res. 1967;25:174–225. doi: 10.1016/S0079-6123(08)60965-6. [DOI] [PubMed] [Google Scholar]
  19. Grant G., Oscarsson O., Rosén I. Functional organization of the spinoreticulocerebellar path with identification of its spinal component. Exp Brain Res. 1966;1(4):306–319. doi: 10.1007/BF00237703. [DOI] [PubMed] [Google Scholar]
  20. Ishikawa K., Kawaguchi S., Rowe M. J. Actions of afferent impulses from muscle receptors on cerebellar Purkyne cells. I. Responses to muscle vibration. Exp Brain Res. 1972;15(2):177–193. doi: 10.1007/BF00235581. [DOI] [PubMed] [Google Scholar]
  21. Ishikawa K., Kawaguchi S., Rowe M. J. Actions of afferent impulses from muscle receptors on cerebellar Purkyne cells. II. Responses to muscle contraction: effects mediated via the climbing fiber pathway. Exp Brain Res. 1972;16(1):104–114. doi: 10.1007/BF00233377. [DOI] [PubMed] [Google Scholar]
  22. Ito M. Neurophysiological aspects of the cerebellar motor control system. Int J Neurol. 1970;7(2):162–176. [PubMed] [Google Scholar]
  23. Ito M., Yoshida M., Obata K. Monosynaptic inhibition of the intracerebellar nuclei induced rom the cerebellar cortex. Experientia. 1964 Oct 15;20(10):575–576. doi: 10.1007/BF02150304. [DOI] [PubMed] [Google Scholar]
  24. Kitai S. T., Oshima T., Provini L., Tsukahara N. Cerebro-cerebellar connections mediated by fast and slow conducting pyramidal tract fibres of the cat. Brain Res. 1969 Sep;15(1):267–271. doi: 10.1016/0006-8993(69)90329-1. [DOI] [PubMed] [Google Scholar]
  25. LARSELL O. The cerebellum of the cat and the monkey. J Comp Neurol. 1953 Aug;99(1):135–199. doi: 10.1002/cne.900990110. [DOI] [PubMed] [Google Scholar]
  26. Marchesi G. F., Strata P. Mossy and climbing fiber activity during phasic and tonic phenomena of sleep. Pflugers Arch. 1971;323(3):219–240. doi: 10.1007/BF00586385. [DOI] [PubMed] [Google Scholar]
  27. Marr D. A theory of cerebellar cortex. J Physiol. 1969 Jun;202(2):437–470. doi: 10.1113/jphysiol.1969.sp008820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oscarsson O., Rosén I. Response characteristics of reticulocerebellar neurones activated from spinal afferents. Exp Brain Res. 1966;1(4):320–328. doi: 10.1007/BF00237704. [DOI] [PubMed] [Google Scholar]
  29. Palkovits M., Magyar P., Szentágothai J. Quantitative histological analysis of the cerebellar cortex in the cat. 3. Structural organization of the molecular layer. Brain Res. 1971 Nov;34(1):1–18. doi: 10.1016/0006-8993(71)90347-7. [DOI] [PubMed] [Google Scholar]
  30. Palkovits M., Magyar P., Szentágothai J. Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the Purkinje cells. Brain Res. 1971 Sep 10;32(1):1–13. doi: 10.1016/0006-8993(71)90151-x. [DOI] [PubMed] [Google Scholar]
  31. Palkovits M., Magyar P., Szentágothai J. Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. Brain Res. 1971 Sep 10;32(1):15–30. doi: 10.1016/0006-8993(71)90152-1. [DOI] [PubMed] [Google Scholar]
  32. Provini L., Redman S., Strata P. Mossy and climbing fibre organization on the anterior lobe of the cerebellum activated by forelimb and hindlimb areas of the sensorimotor cortex. Exp Brain Res. 1968;6(3):216–233. doi: 10.1007/BF00235125. [DOI] [PubMed] [Google Scholar]
  33. Sabah N. H. Reliability of computation in the cerebellum. Biophys J. 1971 May;11(5):429–445. doi: 10.1016/S0006-3495(71)86226-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thach W. T. Cerebellar output: properties, synthesis and uses. Brain Res. 1972 May 12;40(1):89–102. doi: 10.1016/0006-8993(72)90112-6. [DOI] [PubMed] [Google Scholar]
  35. Thach W. T. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968 Sep;31(5):785–797. doi: 10.1152/jn.1968.31.5.785. [DOI] [PubMed] [Google Scholar]
  36. Thach W. T. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. I. Nuclear cell output. J Neurophysiol. 1970 Jul;33(4):527–536. doi: 10.1152/jn.1970.33.4.527. [DOI] [PubMed] [Google Scholar]
  37. Thach W. T. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J Neurophysiol. 1970 Jul;33(4):537–547. doi: 10.1152/jn.1970.33.4.537. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES