Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1973 Mar;229(2):275–296. doi: 10.1113/jphysiol.1973.sp010138

Determination of the frequency response of isometric soleus muscle in the cat using random nerve stimulation

Allan Mannard, Richard B Stein
PMCID: PMC1350307  PMID: 4353409

Abstract

1. The frequency response of isometric soleus muscle was determined efficiently by analysis of the unfused tension generated during short periods of random stimulation of the divided ventral roots, in anaesthetized cats.

2. Despite the complexities of skeletal muscle, the frequency response of soleus, at moderate lengths and stimulation rates in the physiological range, is closely approximated by the frequency response function for a simple, linear, second-order system near critical damping.

3. The soleus muscle shows a uniformly high sensitivity to fluctuations in nerve activity over a range of frequencies similar to the range of frequencies of muscular activity observable during behaviour. The nerve-muscle preparation appears to be well suited for smooth and steady motor activity, since it is much less responsive to the higher frequency components contained in individual action potentials or generated in tremor.

4. The second-order parameters: low-frequency gain, natural frequency and damping ratio provide useful descriptions of the changes in the muscle's response caused by variations of muscle length, nerve stimulation rate or number of active motor units.

5. A reduction in tension incurred, for example, during fatigue can be compensated to some extent either by a lengthening of the loaded muscle or through an increase in neural spike repetition rate. However, both mechanisms produce concomitant increases in the `sluggishness' (increased damping and lower natural frequency) of the preparation. This sluggishness may arise out of limitations imposed by the mechanism for the re-uptake of calcium into the sarcotubular system.

6. One naturally occurring method of increasing tension, by recruitment of more active motoneurones, seems to be desirable because tension can be augmented in this way without an increase in sluggishness. This is presumably because recruitment increases the muscle's response without affecting excitation-contraction coupling in fibres already active.

Full text

PDF
275

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian E. D., Bronk D. W. The discharge of impulses in motor nerve fibres: Part II. The frequency of discharge in reflex and voluntary contractions. J Physiol. 1929 Mar 20;67(2):i3–151. [PMC free article] [PubMed] [Google Scholar]
  2. Ashley C. C., Ridgway E. B. On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres. J Physiol. 1970 Jul;209(1):105–130. doi: 10.1113/jphysiol.1970.sp009158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BROWN M. C., MATTHEWS P. B. The effect on a muscle twitch of the back-response of its motor nerve fibres. J Physiol. 1960 Feb;150:332–346. doi: 10.1113/jphysiol.1960.sp006391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BULLER A. J., LEWIS D. M. THE RATE OF TENSION DEVELOPMENT IN ISOMETRIC TETANIC CONTRACTIONS OF MAMMALIAN FAST AND SLOW SKELETAL MUSCLE. J Physiol. 1965 Feb;176:337–354. doi: 10.1113/jphysiol.1965.sp007554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bayly E. J. Spectral analysis of pulse frequency modulation in the nervous systems. IEEE Trans Biomed Eng. 1968 Oct;15(4):257–265. doi: 10.1109/tbme.1968.4502576. [DOI] [PubMed] [Google Scholar]
  6. Bell P. M., Stein R. B. A digital stimulator built on modular principles using integrated circuits. J Physiol. 1971 Oct;218 (Suppl):5P–5P. [PubMed] [Google Scholar]
  7. Burke R. E., Levine D. N., Zajac F. E., 3rd Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science. 1971 Nov 12;174(4010):709–712. doi: 10.1126/science.174.4010.709. [DOI] [PubMed] [Google Scholar]
  8. Burke R. E., Rudomin P., Zajac F. E., 3rd Catch property in single mammalian motor units. Science. 1970 Apr 3;168(3927):122–124. doi: 10.1126/science.168.3927.122. [DOI] [PubMed] [Google Scholar]
  9. Civan M. M., Podolsky R. J. Contraction kinetics of striated muscle fibres following quick changes in load. J Physiol. 1966 Jun;184(3):511–534. doi: 10.1113/jphysiol.1966.sp007929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clamann H. P. Statistical analysis of motor unit firing patterns in a human skeletal muscle. Biophys J. 1969 Oct;9(10):1233–1251. doi: 10.1016/S0006-3495(69)86448-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Close R. I. Dynamic properties of mammalian skeletal muscles. Physiol Rev. 1972 Jan;52(1):129–197. doi: 10.1152/physrev.1972.52.1.129. [DOI] [PubMed] [Google Scholar]
  12. Connolly R., Gough W., Winegrad S. Characteristics of the isometric twitch of skeletal muscle immediately after a tetanus. A study of the influence of the distribution of calcium within the sarcoplasmic reticulum on the twitch. J Gen Physiol. 1971 Jun;57(6):697–709. [PubMed] [Google Scholar]
  13. Cooper S. The isometric responses of mammalian muscles. J Physiol. 1930 Jun 27;69(4):377–385. doi: 10.1113/jphysiol.1930.sp002657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Engberg I., Lundberg A. An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion. Acta Physiol Scand. 1969 Apr;75(4):614–630. doi: 10.1111/j.1748-1716.1969.tb04415.x. [DOI] [PubMed] [Google Scholar]
  15. French A. S., Holden A. V. Alias-free sampling of neuronal spike trains. Kybernetik. 1971 May;8(5):165–171. doi: 10.1007/BF00291117. [DOI] [PubMed] [Google Scholar]
  16. French A. S., Holden A. V. Semi-on-line implementation of an alias-free sampling system for neuronal signals. Comput Programs Biomed. 1971 Dec;2(1):1–7. doi: 10.1016/0010-468x(71)90002-x. [DOI] [PubMed] [Google Scholar]
  17. French A. S., Stein R. B. A flexible neural analog using integrated circuits. IEEE Trans Biomed Eng. 1970 Jul;17(3):248–253. doi: 10.1109/tbme.1970.4502739. [DOI] [PubMed] [Google Scholar]
  18. GRANIT R. Neuromuscular interaction in postural tone of the cat's isometric soleus muscle. J Physiol. 1958 Oct 31;143(3):387–402. doi: 10.1113/jphysiol.1958.sp006067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gillary H. L., Kennedy D. Neuromuscular effects of impulse pattern in a crustacean motoneuron. J Neurophysiol. 1969 Jul;32(4):607–612. doi: 10.1152/jn.1969.32.4.607. [DOI] [PubMed] [Google Scholar]
  20. Gordon A. M., Huxley A. F., Julian F. J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966 May;184(1):170–192. doi: 10.1113/jphysiol.1966.sp007909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grillner S., Udo M. Motor unit activity and stiffness of the contracting muscle fibres in the tonic stretch reflex. Acta Physiol Scand. 1971 Mar;81(3):422–424. doi: 10.1111/j.1748-1716.1971.tb04916.x. [DOI] [PubMed] [Google Scholar]
  22. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  23. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  24. JEWELL B. R., WILKIE D. R. The mechanical properties of relaxing muscle. J Physiol. 1960 Jun;152:30–47. doi: 10.1113/jphysiol.1960.sp006467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jones G. M., Watt D. G. Observations on the control of stepping and hopping movements in man. J Physiol. 1971 Dec;219(3):709–727. doi: 10.1113/jphysiol.1971.sp009684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Julian F. J. Activation in a skeletal muscle contraction model with a modification for insect fibrillar muscle. Biophys J. 1969 Apr;9(4):547–570. doi: 10.1016/S0006-3495(69)86403-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. KRNJEVIC K., MILEDI R. Failure of neuromuscular propagation in rats. J Physiol. 1958 Mar 11;140(3):440–461. [PMC free article] [PubMed] [Google Scholar]
  28. LIPPOLD O. C., REDFEARN J. W., VUCO J. The effect of sinusoidal stretching upon the activity of stretch receptors in voluntary muscle and their reflex responses. J Physiol. 1958 Dec 30;144(3):373–386. doi: 10.1113/jphysiol.1958.sp006108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lippold O. C. Oscillation in the stretch reflex arc and the origin of the rhythmical, 8-12 C-S component of physiological tremor. J Physiol. 1970 Feb;206(2):359–382. doi: 10.1113/jphysiol.1970.sp009018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. MCPHEDRAN A. M., WUERKER R. B., HENNEMAN E. PROPERTIES OF MOTOR UNITS IN A HOMOGENEOUS RED MUSCLE (SOLEUS) OF THE CAT. J Neurophysiol. 1965 Jan;28:71–84. doi: 10.1152/jn.1965.28.1.71. [DOI] [PubMed] [Google Scholar]
  31. Matthews P. B. The dependence of tension upon extension in the stretch reflex of the soleus muscle of the decerebrate cat. J Physiol. 1959 Oct;147(3):521–546. doi: 10.1113/jphysiol.1959.sp006260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McKean T. A., Poppele R. E., Rosenthal N. P., Terzuolo C. A. The biologically relevant parameter in nerve impulse trains. Kybernetik. 1970 Jan;6(5):168–170. doi: 10.1007/BF00273961. [DOI] [PubMed] [Google Scholar]
  33. PARTRIDGE L. D. MODIFICATIONS OF NEURAL OUTPUT SIGNALS BY MUSCLES: A FREQUENCY RESPONSE STUDY. J Appl Physiol. 1965 Jan;20:150–156. doi: 10.1152/jappl.1965.20.1.150. [DOI] [PubMed] [Google Scholar]
  34. Poppele R. E., Terzuolo C. A. Myotatic reflex: its input-output relation. Science. 1968 Feb 16;159(3816):743–745. doi: 10.1126/science.159.3816.743. [DOI] [PubMed] [Google Scholar]
  35. Rack P. M., Westbury D. R. The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J Physiol. 1969 Oct;204(2):443–460. doi: 10.1113/jphysiol.1969.sp008923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rosenthal N. P., McKean T. A., Roberts W. J., Terzuolo C. A. Frequency analysis of stretch reflex and its main subsystems in triceps surae muscles of the cat. J Neurophysiol. 1970 Nov;33(6):713–749. doi: 10.1152/jn.1970.33.6.713. [DOI] [PubMed] [Google Scholar]
  37. STANDAERT F. G. POST-TETANIC REPETITIVE ACTIVITY IN THE CAT SOLEUS NERVE. ITS ORIGIN, COURSE, AND MECHANISM OF GENERATION. J Gen Physiol. 1963 Sep;47:53–70. doi: 10.1085/jgp.47.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sherrington C. S. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol. 1910 Apr 26;40(1-2):28–121. doi: 10.1113/jphysiol.1910.sp001362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stein R. B., French A. S., Mannard A., Yemm R. New methods for analysing motor function in man and animals. Brain Res. 1972 May 12;40(1):187–192. doi: 10.1016/0006-8993(72)90126-6. [DOI] [PubMed] [Google Scholar]
  40. Wilson D. M., Larimer J. L. The catch property of ordinary muscle. Proc Natl Acad Sci U S A. 1968 Nov;61(3):909–916. doi: 10.1073/pnas.61.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES