Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1969 Jan;200(1):187–204. doi: 10.1113/jphysiol.1969.sp008688

Adaptation of the generator potential in the crayfish stretch receptors under constant length and constant tension

S Nakajima, Kayoko Onodera
PMCID: PMC1350424  PMID: 5761940

Abstract

1. Generator potentials were investigated in stretch receptors of crayfish after abolishing spike potentials with tetrodotoxin.

2. The time courses of the decline of generator potential (generator adaptation) were almost the same in the slowly and rapidly adapting receptors.

3. The time courses of the tension changes after suddenly stretching the receptor muscles did not differ much between the two receptor types.

4. The amplitudes of generator potential per unit stress or per unit strain in the receptor muscle were roughly the same in the two receptor types.

5. By comparing generator adaptation under length-clamp and tension-clamp in the slowly adapting receptors, it was suggested that roughly 70% of the generator adaptation could be explained by a simple visco-elastic property of the receptor muscle, when observed for 1 sec after the beginning of the stretch.

6. It was concluded that the marked differences in the receptor adaptation between the two receptor types were attributable to the differences in the properties of spike generating membrane rather than to the properties of the generator potentials.

7. In each type of receptor, both the generator adaptation and the adaptation of spike generating mechanisms contributed to determining the whole rates of receptor adaptation. In the slowly adapting receptor, however, the generator adaptation seemed more important, while in the rapidly adapting receptor the spike generating mechanisms seemed more important.

Full text

PDF
187

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albuquerque E. X., Grampp W. Effects of tetrodotoxin on the slowly adapting stretch receptor neurone of lobster. J Physiol. 1968 Mar;195(1):141–156. doi: 10.1113/jphysiol.1968.sp008452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ECKERT R. O. Reflex relationships of the abdominal stretch receptors of the crayfish. I. Feedback inhibition of the receptors. J Cell Comp Physiol. 1961 Jun;57:149–162. doi: 10.1002/jcp.1030570303. [DOI] [PubMed] [Google Scholar]
  3. EDWARDS C., TERZUOLO C. A., WASHIZU H. THE EFFECT OF CHANGES OF THE IONIC ENVIRONMENT UPON AN ISOLATED CRUSTACEAN SENSORY NEURON. J Neurophysiol. 1963 Nov;26:948–957. doi: 10.1152/jn.1963.26.6.948. [DOI] [PubMed] [Google Scholar]
  4. EYZAGUIRRE C., KUFFLER S. W. Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J Gen Physiol. 1955 Sep 20;39(1):87–119. doi: 10.1085/jgp.39.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FLOREY E., FLOREY E. Microanatomy of the abdominal stretch receptors of the crayfish (Astacus fluviatilis L.). J Gen Physiol. 1955 Sep 20;39(1):69–85. doi: 10.1085/jgp.39.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FREYGANG W. H., Jr, GOLDSTEIN D. A., HELLAM D. C. THE AFTER-POTENTIAL THAT FOLLOWS TRAINS OF IMPULSES IN FROG MUSCLE FIBERS. J Gen Physiol. 1964 May;47:929–952. doi: 10.1085/jgp.47.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fields H. L., Evoy W. H., Kennedy D. Reflex role played by efferent control of an invertebrate stretch receptor. J Neurophysiol. 1967 Jul;30(4):859–874. doi: 10.1152/jn.1967.30.4.859. [DOI] [PubMed] [Google Scholar]
  8. GRUNDFEST H. Electrical inexcitability of synapses and some consequences in the central nervous system. Physiol Rev. 1957 Jul;37(3):337–361. doi: 10.1152/physrev.1957.37.3.337. [DOI] [PubMed] [Google Scholar]
  9. Gordon A. M., Huxley A. F., Julian F. J. Tension development in highly stretched vertebrate muscle fibres. J Physiol. 1966 May;184(1):143–169. doi: 10.1113/jphysiol.1966.sp007908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grundfest H. Tetrodotoxin: action on graded responses. Science. 1967 Jun 30;156(3783):1771–1771. [PubMed] [Google Scholar]
  11. HUBBARD S. J. A study of rapid mechanical events in a mechanoreceptor. J Physiol. 1958 Apr 30;141(2):198–218. doi: 10.1113/jphysiol.1958.sp005968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KATZ B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J Physiol. 1950 Oct 16;111(3-4):261–282. doi: 10.1113/jphysiol.1950.sp004479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KRNJEVIC K., VAN GELDER N. M. Tension changes in crayfish stretch receptors. J Physiol. 1961 Dec;159:310–325. doi: 10.1113/jphysiol.1961.sp006810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KUFFLER S. W. Mechanisms of activation and motor control of stretch receptors in lobster and crayfish. J Neurophysiol. 1954 Nov;17(6):558–574. doi: 10.1152/jn.1954.17.6.558. [DOI] [PubMed] [Google Scholar]
  15. LIPPOLD O. C., NICHOLLS J. G., REDFEARN J. W. Electrical and mechanical factors in the adaptation of a mammalian muscle spindle. J Physiol. 1960 Sep;153:209–217. doi: 10.1113/jphysiol.1960.sp006529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOEWENSTEIN W. R. Excitation and changes in adaptation by stretch of mechanoreceptors. J Physiol. 1956 Sep 27;133(3):588–602. doi: 10.1113/jphysiol.1956.sp005611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOEWENSTEIN W. R., MENDELSON M. COMPONENTS OF RECEPTOR ADAPTATION IN A PACINIAN CORPUSCLE. J Physiol. 1965 Apr;177:377–397. doi: 10.1113/jphysiol.1965.sp007598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LOEWENSTEIN W. R., TERZUOLO C. A., WASHIZU Y. SEPARATION OF TRANSDUCER AND IMPULSE-GENERATING PROCESSES IN SENSORY RECEPTORS. Science. 1963 Nov 29;142(3596):1180–1181. doi: 10.1126/science.142.3596.1180. [DOI] [PubMed] [Google Scholar]
  19. Loewenstein W. R., Skalak R. Mechanical transmission in a Pacinian corpuscle. An analysis and a theory. J Physiol. 1966 Jan;182(2):346–378. doi: 10.1113/jphysiol.1966.sp007827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MATTHEWS P. B. MUSCLE SPINDLES AND THEIR MOTOR CONTROL. Physiol Rev. 1964 Apr;44:219–288. doi: 10.1152/physrev.1964.44.2.219. [DOI] [PubMed] [Google Scholar]
  21. Matthews B. H. Nerve endings in mammalian muscle. J Physiol. 1933 Apr 13;78(1):1–53. doi: 10.1113/jphysiol.1933.sp002984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. NAKAJIMA S. ADAPTATION IN STRETCH RECEPTOR NEURONS OF CRAYFISH. Science. 1964 Nov 27;146(3648):1168–1170. doi: 10.1126/science.146.3648.1168. [DOI] [PubMed] [Google Scholar]
  23. Nakajima S., Onodera K. Membrane properties of the stretch receptor neurones of crayfish with particular reference to mechanisms of sensory adaptation. J Physiol. 1969 Jan;200(1):161–185. doi: 10.1113/jphysiol.1969.sp008687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nakajima S., Takahashi K. Post-tetanic hyperpolarization and electrogenic Na pump in stretch receptor neurone of crayfish. J Physiol. 1966 Nov;187(1):105–127. doi: 10.1113/jphysiol.1966.sp008078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nishi K., Sato M. Blocking of the impulse and depression of the receptor potential by tetrodotoxin in non-myelinated nerve terminals in pacinian corpuscles. J Physiol. 1966 May;184(2):376–386. doi: 10.1113/jphysiol.1966.sp007920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Obara S., Grundfest H. Effects of lithium on different membrane components of crayfish stretch receptor neurons. J Gen Physiol. 1968 May;51(5):635–654. doi: 10.1085/jgp.51.5.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ozeki M., Sato M. Changes in the membrane potential and the membrane conductance associated with a sustained compression of the non-myelinated nerve terminal in Pacinian corpuscles. J Physiol. 1965 Sep;180(1):186–208. [PMC free article] [PubMed] [Google Scholar]
  28. RITCHIE J. M., STRAUB R. W. The hyperpolarization which follows activity in mammalian non-medullated fibres. J Physiol. 1957 Apr 3;136(1):80–97. doi: 10.1113/jphysiol.1957.sp005744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. TERZUOLO C. A., WASHIZU Y. Relation between stimulus strength, generator potential and impulse frequency in stretch receptor of Crustacea. J Neurophysiol. 1962 Jan;25:56–66. doi: 10.1152/jn.1962.25.1.56. [DOI] [PubMed] [Google Scholar]
  30. Toyama K. An analysis of impulse discharges from the spindle receptor. Jpn J Physiol. 1966 Apr 15;16(2):113–125. doi: 10.2170/jjphysiol.16.113. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES