Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1973 May;231(1):143–165. doi: 10.1113/jphysiol.1973.sp010225

The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model

G F Baker, W F Widdas
PMCID: PMC1350442  PMID: 4715343

Abstract

1. 4, 6-O-Ethylidene-α-D-glucopyranose (ethylidene glucose) has been used to study the competitive inhibition of glucose exchange fluxes when the reagent was (i) inside the cells and (ii) on the outside.

2. 50% inhibition of glucose exchange at 20 mM and 16° C required 200 mM ethylidene glucose when on the inside in contrast to 25-30 mM when on the outside.

3. The inhibitions at different inhibitor/glucose concentration ratios were measured and analysis of the data suggested that the half-saturation constant for ethylidene glucose was 6 times that for glucose inside the cell as against 1·5 outside. The analysis, however, suggested an asymmetry in respect to the affinities for glucose of approximately ten-fold and this would make the asymmetry towards ethylidene glucose forty-fold.

4. Such asymmetries make it necessary to consider a transfer mechanism for sugars with different components on the outer and inner membrane interfaces and simple kinetics for a two component system have been developed and used for analysing the experimental data quantitatively.

5. The kinetic similarities to and difference from the kinetics of a simple mobile carrier and those of some more recent models are briefly discussed.

Full text

PDF
143

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOWYER F., WIDDAS W. F. The action of inhibitors on the facilitated hexose transfer system in erythrocytes. J Physiol. 1958 Apr 30;141(2):219–232. doi: 10.1113/jphysiol.1958.sp005969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker G. F., Widdas W. F. The asymmetry of the hexose transfer system in human red cells towards ethylidene glucose. J Physiol. 1972 Oct;226(2):87P–88P. [PubMed] [Google Scholar]
  3. Baker G. F., Widdas W. F. The permeation of human red cells by 4,6-O-ethylidene- -D-glucopyranose (ethylidene glucose). J Physiol. 1973 May;231(1):129–142. doi: 10.1113/jphysiol.1973.sp010224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benes I., Kolínská J., Kotyk A. Effect of phloretin on monosaccharide transport in erythrocyte ghosts. J Membr Biol. 1972;8(3):303–309. doi: 10.1007/BF01868107. [DOI] [PubMed] [Google Scholar]
  5. Eilam Y., Stein W. D. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell. Biochim Biophys Acta. 1972 Apr 14;266(1):161–173. doi: 10.1016/0005-2736(72)90132-0. [DOI] [PubMed] [Google Scholar]
  6. Geck P. Eigenschaften eines asymmetrischen Carrier-Modells für den Zuckertrnasport am menschlichen Erythrozyten. Biochim Biophys Acta. 1971 Aug 13;241(2):462–472. doi: 10.1016/0005-2736(71)90045-9. [DOI] [PubMed] [Google Scholar]
  7. Karlish S. J., Lieb W. R., Ram D., Stein W. D. Kinetic parameters of glucose efflux from human red blood cells under zero-trans conditions. Biochim Biophys Acta. 1972 Jan 17;255(1):126–132. doi: 10.1016/0005-2736(72)90014-4. [DOI] [PubMed] [Google Scholar]
  8. Krupka R. M. Combined effects of maltose and deoxyglucose on fluorodinitrobenzene inactivation of sugar transport in erythrocytes. Biochim Biophys Acta. 1972 Sep 1;282(1):326–336. doi: 10.1016/0005-2736(72)90338-0. [DOI] [PubMed] [Google Scholar]
  9. Lieb W. R., Stein W. D. Quantitative predictions of a noncarrier model for glucose transport across the human red cell membrane. Biophys J. 1970 Jul;10(7):585–609. doi: 10.1016/s0006-3495(70)86322-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mawe R. C., Hempling H. G. The exchange of C14 glucose across the membrane of the human erythrocyte. J Cell Physiol. 1965 Aug;66(1):95–103. doi: 10.1002/jcp.1030660110. [DOI] [PubMed] [Google Scholar]
  11. Miller D. M. The kinetics of selective biological transport. 3. Erythrocyte-monosaccharide transport data. Biophys J. 1968 Nov;8(11):1329–1338. doi: 10.1016/s0006-3495(68)86559-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller D. M. The kinetics of selective biological transport. IV. Assessment of three carrier systems using the erythrocyte-monosaccharide transport data. Biophys J. 1968 Nov;8(11):1339–1352. doi: 10.1016/S0006-3495(68)86560-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. REGEN D. M., MORGAN H. E. STUDIES OF THE GLUCOSE-TRANSPORT SYSTEM IN THE RABBIT ERYTHROCYTE. Biochim Biophys Acta. 1964 Jan 27;79:151–166. doi: 10.1016/0926-6577(64)90048-8. [DOI] [PubMed] [Google Scholar]
  14. ROSENBERG T., WILBRANDT W. The kinetics of membrane transports involving chemical reactions. Exp Cell Res. 1955 Aug;9(1):49–67. doi: 10.1016/0014-4827(55)90160-9. [DOI] [PubMed] [Google Scholar]
  15. SEN A. K., WIDDAS W. F. Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit. J Physiol. 1962 Mar;160:392–403. doi: 10.1113/jphysiol.1962.sp006854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SEN A. K., WIDDAS W. F. Variations of the parameters of glucose transfer across the human erythrocyte membrane in the presence of inhibitors of transfer. J Physiol. 1962 Mar;160:404–416. doi: 10.1113/jphysiol.1962.sp006855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. WIDDAS W. F. Facilitated transfer of hexoses across the human erythrocyte membrane. J Physiol. 1954 Jul 28;125(1):163–180. doi: 10.1113/jphysiol.1954.sp005148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WIDDAS W. F. Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J Physiol. 1952 Sep;118(1):23–39. doi: 10.1113/jphysiol.1952.sp004770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zipper H., Mawe R. C. The exchange and maximal net flux of glucose across the human erythrocyte. I. The effect of insulin, insulin derivatives and small proteins. Biochim Biophys Acta. 1972 Sep 1;282(1):311–325. doi: 10.1016/0005-2736(72)90337-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES