Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1969 Feb;200(2):321–344. doi: 10.1113/jphysiol.1969.sp008696

Effect of prolonged saline-exposure on sodium transport across frog-skin

R Hornby, S Thomas
PMCID: PMC1350470  PMID: 5764403

Abstract

1. Differences in Na transport between skins from Rana temporaria and R. esculenta maintained for up to several weeks in water or 0·7% saline (0·7 g NaCl in 100 ml. H2O), with and without daily injections of 4% saline (4 g NaCl in 100 ml. H2O), were measured, in vitro.

2. In saline-treated skins, the following changes were found:

(a) An increased Na content.

(b) A consistent decrease in short-circuit current (Isc).

(c) An increased d.c. resistance, R, the consistency of which varied with the anion content of the Ringer solution.

(d) A highly significant fall in Na influx, accounting for the reduced Isc; a small reduction in Na efflux was not significant, statistically.

(e) The Pitressin-induced increment in Isc was usually considerably lower compared with that in water-exposed skins; considered relative to the pre-Pitressin values, however, there were no clear differences.

(f) By calculation from the changes in resistance (R) caused by replacement of outer Na2SO4 Ringer by K2SO4 Ringer solution,

I. E0, the electromotive force of the active sodium transport system, was moderately, but significantly, reduced,

II. R shunt, the shunt path resistance, was moderately, but significantly, increased, and

III. Rser, the series path resistance, was considerably, and highly significantly, increased.

(g) K influx from outer K2SO4 Ringer solution was reduced.

3. Differences between skins from water-exposed and saline-treated frogs persisted, in vitro, despite the occurrence of anionic-dependent acute changes after mounting in Ringer solution.

4. There were seasonal changes in Isc, and in the effects of saline treatment.

5. The findings are discussed in terms of decreased permeability of outer barriers to ion-diffusion, and reduced activity of a Na pump.

Full text

PDF
321

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN A. C. Current and potential of frog skin in vivo and in vitro. J Cell Comp Physiol. 1962 Dec;60:263–269. doi: 10.1002/jcp.1030600309. [DOI] [PubMed] [Google Scholar]
  2. CEREIJIDO M., HERRERA F. C., FLANIGAN W. J., CURRAN P. F. THE INFLUENCE OF NA CONCENTRATION ON NA TRANSPORT ACROSS FROG SKIN. J Gen Physiol. 1964 May;47:879–893. doi: 10.1085/jgp.47.5.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CRABBE J. STIMULATION BY ALDOSTERONE OF ACTIVE SODIUM TRANSPORT ACROSS THE ISOLATED VENTRAL SKIN OF AMPHIBIA. Endocrinology. 1964 Nov;75:809–811. doi: 10.1210/endo-75-5-809. [DOI] [PubMed] [Google Scholar]
  4. CRABBE J. Stimulation of active sodium transport across the isolated toad bladder after injection of aldosterone to the animal. Endocrinology. 1961 Oct;69:673–682. doi: 10.1210/endo-69-4-673. [DOI] [PubMed] [Google Scholar]
  5. Cereijido M., Reisin I., Rotunno C. A. The effect of sodium concentration on the content and distribution of sodium in the frog skin. J Physiol. 1968 May;196(1):237–253. doi: 10.1113/jphysiol.1968.sp008504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crabbé J., De Weer P. Action of aldosterone and vasopressin on the active transport of sodium by the isolated toad bladder. J Physiol. 1965 Oct;180(3):560–568. doi: 10.1113/jphysiol.1965.sp007717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferreira H. G., Smith M. W. Effect of a saline environment on sodium transport by the toad colon. J Physiol. 1968 Sep;198(2):329–343. doi: 10.1113/jphysiol.1968.sp008609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferreira K. T. Anionic dependence of sodium transport in the frog skin. Biochim Biophys Acta. 1968 Jun 11;150(4):587–598. doi: 10.1016/0005-2736(68)90048-5. [DOI] [PubMed] [Google Scholar]
  9. HERRERA F. C., CURRAN P. F. The effect of Ca and antidiuretic hormone on Na transport across frog skin. I. Examination of interrelationships between Ca and hormone. J Gen Physiol. 1963 May;46:999–1010. doi: 10.1085/jgp.46.5.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HOSHIKO T., USSING H. H. The kinetics of Na24 flux across amphibian skin and bladder. Acta Physiol Scand. 1960 May 25;49:74–81. doi: 10.1111/j.1748-1716.1960.tb01931.x. [DOI] [PubMed] [Google Scholar]
  11. JØRGENSEN C. B. On excretion of chloride in sodium chloride loaded frogs and toads. Acta Physiol Scand. 1954;30(2-3):171–177. doi: 10.1111/j.1748-1716.1954.tb01085.x. [DOI] [PubMed] [Google Scholar]
  12. KIRSCHNER L. B. On the mechanism of active sodium transport across the frog skin. J Cell Physiol. 1955 Feb;45(1):61–87. doi: 10.1002/jcp.1030450106. [DOI] [PubMed] [Google Scholar]
  13. KLAHR S., BRICKER N. S. ON THE ELECTROGENIC NATURE OF ACTIVE SODIUM TRANSPORT ACROSS THE ISOLATED FROG SKIN. J Clin Invest. 1964 May;43:922–930. doi: 10.1172/JCI104978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  15. LEAF A., DEMPSEY E. Some effects of mammalian neurohypophyseal hormones on metabolism and active transport of sodium by the isolated toad bladder. J Biol Chem. 1960 Jul;235:2160–2163. [PubMed] [Google Scholar]
  16. Leaf A. Membrane effects of antidiuretic hormone. Am J Med. 1967 May;42(5):745–756. doi: 10.1016/0002-9343(67)90092-7. [DOI] [PubMed] [Google Scholar]
  17. Leb D. E., Edwards C., Lindley B. D., Hoshiko T. Interaction between the effects of inside and outside Na and K on bullfrog skin potential. J Gen Physiol. 1965 Nov;49(2):309–320. doi: 10.1085/jgp.49.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MAETZ J., JARD S., MOREL F. Action de l'aldostérone sur le transport actif de sodium de la peau de grenouille. C R Hebd Seances Acad Sci. 1958 Jul 28;247(4):516–518. [PubMed] [Google Scholar]
  19. MYERS R. M., BISHOP W. R., SCHEER B. T. Anterior pituitary control of active sodium transport across frog skin. Am J Physiol. 1961 Mar;200:444–450. doi: 10.1152/ajplegacy.1961.200.3.444. [DOI] [PubMed] [Google Scholar]
  20. Martin D. W., Curran P. F. Reversed potentials in isolated frog skin. II. Active transport of chloride. J Cell Physiol. 1966 Jun;67(3):367–373. doi: 10.1002/jcp.1040670302. [DOI] [PubMed] [Google Scholar]
  21. Middler S. A., Kleeman C. R., Edwards E. Neurohypophysial function in the toad Bufo marinus. Gen Comp Endocrinol. 1967 Aug;9(1):38–48. doi: 10.1016/0016-6480(67)90095-0. [DOI] [PubMed] [Google Scholar]
  22. PIGEON G., EPSTEIN F. H. Water uptake in the intact frog. Am J Physiol. 1963 Feb;204:217–221. doi: 10.1152/ajplegacy.1963.204.2.217. [DOI] [PubMed] [Google Scholar]
  23. PORTER G. A., EDELMAN I. S. THE ACTION OF ALDOSTERONE AND RELATED CORTICOSTEROIDS ON SODIUM TRANSPORT ACROSS THE TOAD BLADDER. J Clin Invest. 1964 Apr;43:611–620. doi: 10.1172/JCI104946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SHARE L., USSING H. H. EFFECT OF POTASSIUM ON THE MOVEMENT OF WATER ACROSS THE ISOLATED AMPHIBIAN SKIN. Acta Physiol Scand. 1965 May-Jun;64:109–118. doi: 10.1111/j.1748-1716.1965.tb04159.x. [DOI] [PubMed] [Google Scholar]
  25. SHARP G. W., LEAF A. BIOLOGICAL ACTION OF ALDOSTERONE IN VITRO. Nature. 1964 Jun 20;202:1185–1188. doi: 10.1038/2021185a0. [DOI] [PubMed] [Google Scholar]
  26. Sharp G. W., Leaf A. Mechanism of action of aldosterone. Physiol Rev. 1966 Oct;46(4):593–633. doi: 10.1152/physrev.1966.46.4.593. [DOI] [PubMed] [Google Scholar]
  27. Steinbach H. B. On the ability of isolated frog skin to manufacture Ringer's fluid. J Gen Physiol. 1967 Nov;50(10):2377–2389. doi: 10.1085/jgp.50.10.2377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Steinbach H. B. The sodium and potassium exchange between intact frogs and their environment. J Gen Physiol. 1966 Jul;49(6):1111–1124. doi: 10.1085/jgp.0491111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. USSING H. H., WINDHAGER E. E. NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. Acta Physiol Scand. 1964 Aug;61:484–504. [PubMed] [Google Scholar]
  30. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES