Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1973 Aug;232(3):515–543. doi: 10.1113/jphysiol.1973.sp010284

Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetized monkeys

I. Functional cell types and their anatomical distribution in the supraoptic nucleus and the internuclear zone

James N Hayward, David P Jennings
PMCID: PMC1350507  PMID: 4202432

Abstract

1. We recorded with tungsten micro-electrodes the spontaneous and evoked activity of single cells in the supraoptic nucleus (n.s.o.) and internuclear zone (i.n.z.) of trained, unanaesthetized monkeys who accepted experimental restraints and pituitary gland stimulation without anxiety.

2. Of the 125 hypothalamic neurones analysed, 109 (87%) we classified as magnocellular neuroendocrine cells on the basis of the anatomical location of the cells, the pattern of spontaneous discharge, the effect of pituitary gland stimulation and the response to arousing sensory stimuli.

3. Sixteen (13%) of the cells studied under identical conditions we labelled as non-neuroendocrine cells. Located in the i.n.z. and supraoptic nucleus—optic tract junction (n.s.o.—t.o.), these cells responded to arousing sensory stimuli, showed `continuously active' (i.n.z.) and `high-frequency burster' (n.s.o.—t.o.) patterns of discharge and were not driven by pituitary stimuli.

4. Thirty-seven (30%) of the magnocellular neuroendocrine cells we describe as `identified' because with pituitary gland stimulation we evoked antidromic potentials, mean latency 8·1 msec and mean conduction velocity 0·8 m/sec, with collision between orthodromic and antidromic potentials. Antidromic excitation of neuroendocrine cells was followed by inhibition of spontaneous discharge of cells for 80-125 msec suggesting the presence of recurrent collaterals in primate neuroendocrine cells. Seventy-two (57%) of the magnocellular neuroendocrine cells we designated as `non-identified' because of lack of response, failure of collision or non-tested to pituitary gland stimulation. None of these mangocellular neuroendocrine cells, `identified' or `non-identified', responded to non-noxious arousing sensory stimuli.

5. We find seventy-nine (63%) magnocellular neuroendocrine cells in the supraoptic nucleus (n.s.o.) and thirty (24%) magnocellular neuroendocrine cells in the internuclear zone (i.n.z.) with three basic patterns of spontaneous activity: `silent' cells (s., four cells, 3%); `low-frequency burster' cells (l.f.b., twenty-six cells, 21%); and `continuously active' cells (c.a., seventy-nine cells, 63%).

6. Twenty-six (21%) l.f.b. magnocellular neuroendocrine cells exhibited regular, repetitive, periodic firing patterns with a cycle of 17 sec, involving 5 sec of discharge at 5 spikes/sec and 12 sec of silence. The 26 spikes/burst showed no consistent pattern of serial interspike interval distribution. The burst pattern of discharge was interrupted by intracarotid osmotic stimuli but not by mildly arousing sensory stimuli or sleep—waking behaviour. Mean antidromic latencies of 7·98 msec and the anatomical distributions were the similarities exhibited by the l.f.b. and the c.a. cells.

7. We conclude that the three functional types, s., c.a. and l.f.b., of the magnocellular neuroendocrine cells, are randomly distributed in the supraoptic nucleus (n.s.o.) and in the internuclear zone (i.n.z.) with each type receiving `specific' input connexions. We suggest that these three characteristic firing patterns of magnocellular neuroendocrine cells may be related to the `cellular' secretion of `specific' neurohypophysial hormones and neurophysins.

Full text

PDF
515

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker M. A., Burrell E., Penkhus J., Hayward J. N. Capping and stabilizing chronic intravascular cannulae. J Appl Physiol. 1968 Apr;24(4):577–579. doi: 10.1152/jappl.1968.24.4.577. [DOI] [PubMed] [Google Scholar]
  2. Barker J. L., Crayton J. W., Nicoll R. A. Antidromic and orthodromic responses of paraventricular and supraoptic neurosecretory cells. Brain Res. 1971 Oct 29;33(2):353–366. doi: 10.1016/0006-8993(71)90108-9. [DOI] [PubMed] [Google Scholar]
  3. Boyar R., Perlow M., Hellman L., Kapen S., Weitzman E. Twenty-four hour pattern of luteinizing hormone secretion in normal men with sleep stage recording. J Clin Endocrinol Metab. 1972 Jul;35(1):73–81. doi: 10.1210/jcem-35-1-73. [DOI] [PubMed] [Google Scholar]
  4. Burford G. D., Jones C. W., Pickering B. T. Tentative identification of a vasopressin-neurophysin and an oxytocin-neurophysin in the rat. Biochem J. 1971 Oct;124(4):809–813. doi: 10.1042/bj1240809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CROSS B. A., GREEN J. D. Activity of single neurones in the hypothalamus: effect of osmotic and other stimuli. J Physiol. 1959 Oct;148:554–569. doi: 10.1113/jphysiol.1959.sp006306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cross B. A., Silver I. A. Electrophysiological studies on the hypothalamus. Br Med Bull. 1966 Sep;22(3):254–260. doi: 10.1093/oxfordjournals.bmb.a070483. [DOI] [PubMed] [Google Scholar]
  7. Dierschke D. J., Bhattacharya A. N., Atkinson L. E., Knobil E. Circhoral oscillations of plasma LH levels in the ovariectomized rhesus monkey. Endocrinology. 1970 Nov;87(5):850–853. doi: 10.1210/endo-87-5-850. [DOI] [PubMed] [Google Scholar]
  8. Dreifuss J. J., Kelly J. S. Recurrent inhibition of antidromically identified rat supraoptic neurones. J Physiol. 1972 Jan;220(1):87–103. doi: 10.1113/jphysiol.1972.sp009696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dyball R. E. Oxytocin and ADH secretion in relation to electrical activity in antidromically identified supraoptic and paraventricular units. J Physiol. 1971 Apr;214(2):245–256. doi: 10.1113/jphysiol.1971.sp009430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evarts E. V. A technique for recording activity of subcortical neurons in moving animals. Electroencephalogr Clin Neurophysiol. 1968 Jan;24(1):83–86. doi: 10.1016/0013-4694(68)90070-9. [DOI] [PubMed] [Google Scholar]
  11. Findlay A. L., Hayward J. N. Spontaneous activity of single neurones in the hypothalamus of rabbits during sleep and waking. J Physiol. 1969 Mar;201(1):237–258. doi: 10.1113/jphysiol.1969.sp008753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goodman I., Hiatt R. B. Coherin: a new peptide of the bovine neurohypophysis with activity on gastrointestinal motility. Science. 1972 Oct 27;178(4059):419–421. doi: 10.1126/science.178.4059.419. [DOI] [PubMed] [Google Scholar]
  13. Hayward J. N., Baker M. A. A comparative study of the role of the cerebral arterial blood in the regulation of brain temperature in five mammals. Brain Res. 1969 Dec;16(2):417–440. doi: 10.1016/0006-8993(69)90236-4. [DOI] [PubMed] [Google Scholar]
  14. Hayward J. N., Baker M. A. Role of cerebral arterial blood in the regulation of brain temperature in the monkey. Am J Physiol. 1968 Aug;215(2):389–403. doi: 10.1152/ajplegacy.1968.215.2.389. [DOI] [PubMed] [Google Scholar]
  15. Hayward J. N. Brain temperature and thermosensitivity of nerve cells in monkey. Trans Am Neurol Assoc. 1969;94:157–159. [PubMed] [Google Scholar]
  16. Hayward J. N., Jennings D. P. Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetized monkeys. II. Osmosensitivity of functional cell types in the supraoptic nucleus and the internuclear zone. J Physiol. 1973 Aug;232(3):545–572. doi: 10.1113/jphysiol.1973.sp010285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hayward J. N., Vincent J. D. Osmosensitive single neurones in the hypothalamus of unanaesthetized monkeys. J Physiol. 1970 Nov;210(4):947–972. doi: 10.1113/jphysiol.1970.sp009251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heller H. The hormone content of the vertebrate hypothalamo-neurohypophysial system. Br Med Bull. 1966 Sep;22(3):227–231. doi: 10.1093/oxfordjournals.bmb.a070478. [DOI] [PubMed] [Google Scholar]
  19. Hollenberg M. D., Hope D. B. The isolation of the native hormone-binding proteins from bovine pituitary posterior lobes. Crystallization of neurophysin-I and-II as complexes with [8-arginine]-vasopressin. Biochem J. 1968 Jan;106(2):557–564. doi: 10.1042/bj1060557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. JOYNT R. J. FUNCTIONAL SIGNIFICANCE OF OSMOSENSITIVE UNITS IN THE ANTERIOR HYPOTHALAMUS. Neurology. 1964 Jun;14:584–590. doi: 10.1212/wnl.14.6.584. [DOI] [PubMed] [Google Scholar]
  21. Jankowska E., Lindström S. Morphological identification of Renshaw cells. Acta Physiol Scand. 1971 Mar;81(3):428–430. doi: 10.1111/j.1748-1716.1971.tb04918.x. [DOI] [PubMed] [Google Scholar]
  22. KANDEL E. R. ELECTRICAL PROPERTIES OF HYPOTHALAMIC NEUROENDOCRINE CELLS. J Gen Physiol. 1964 Mar;47:691–717. doi: 10.1085/jgp.47.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Koizumi K., Yamashita H. Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recordings. J Physiol. 1972 Mar;221(3):683–705. doi: 10.1113/jphysiol.1972.sp009776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LAQUEUR G. L. Neurosecretory pathways between the hypothalamic paraventricular nucleus and the neurohypophysis. J Comp Neurol. 1954 Dec;101(3):543–563. doi: 10.1002/cne.901010302. [DOI] [PubMed] [Google Scholar]
  25. Livett B. G., Uttenthal L. O., Hope D. B. Localization of neurophysin-II in the hypothalamo-neurohypophysial system of the pig by immunofluorescence histochemistry. Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):371–378. doi: 10.1098/rstb.1971.0067. [DOI] [PubMed] [Google Scholar]
  26. Martin A. R. A peak amplitude selector for electrophysiological data analysis. IEEE Trans Biomed Eng. 1969 Apr;16(2):152–159. doi: 10.1109/tbme.1969.4502629. [DOI] [PubMed] [Google Scholar]
  27. Negoro H., Holland R. C. Inhibition of unit activity in the hypothalamic paraventricular nucleus following antidromic activation. Brain Res. 1972 Jul 20;42(2):385–402. doi: 10.1016/0006-8993(72)90538-0. [DOI] [PubMed] [Google Scholar]
  28. Perkel D. H., Gerstein G. L., Moore G. P. Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys J. 1967 Jul;7(4):391–418. doi: 10.1016/S0006-3495(67)86596-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Robinson A. G., Zimmerman E. A., Frantz A. G. Physiologic investigation of posterior pituitary binding proteins neurophysin I and neurophysin II. Metabolism. 1971 Dec;20(12):1148–1155. doi: 10.1016/0026-0495(71)90040-0. [DOI] [PubMed] [Google Scholar]
  30. Sachs H., Fawcett P., Takabatake Y., Portanova R. Biosynthesis and release of vasopressin and neurophysin. Recent Prog Horm Res. 1969;25:447–491. doi: 10.1016/b978-0-12-571125-8.50013-2. [DOI] [PubMed] [Google Scholar]
  31. Sokol H. W. Evidence for oxytocin synthesis after electrolytic destruction f the paraventricular nucleus in rats withereditary hypothalamic diabetes insipidus. Neuroendocrinology. 1970;6(2):90–97. doi: 10.1159/000121911. [DOI] [PubMed] [Google Scholar]
  32. Sokol H. W., Valtin H. Evidence for the synthesis of oxytocin and vasopressin in separate neurons. Nature. 1967 Apr 15;214(5085):314–316. doi: 10.1038/214314a0. [DOI] [PubMed] [Google Scholar]
  33. Stinnakre J., Tauc L. Central neuronal response to the activation of osmoreceptors in the osphradium of Aplysia. J Exp Biol. 1969 Nov;51(2):347–361. doi: 10.1242/jeb.51.2.347. [DOI] [PubMed] [Google Scholar]
  34. Sundsten J. W., Novin D., Cross B. A. Identification and distribution of paraventricular units excited by stimulation of the neural lobe of the hypophysis. Exp Neurol. 1970 Feb;26(2):316–329. doi: 10.1016/0014-4886(70)90129-9. [DOI] [PubMed] [Google Scholar]
  35. Uttenthal L. O., Hope D. B. The isolation of three neurophysins from porcine posterior pituitary lobes. Biochem J. 1970 Mar;116(5):899–909. doi: 10.1042/bj1160899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vincent J. D., Arnauld E., Bioulac B. Activity of osmosensitive single cells in the hypothalamus of the behaving monkey during drinking. Brain Res. 1972 Sep 29;44(2):371–384. doi: 10.1016/0006-8993(72)90309-5. [DOI] [PubMed] [Google Scholar]
  37. Vincent J. D., Arnauld E., Nicolescu-Catargi A. Osmoreceptors and neurosecretory cells in the supraoptic complex of the unanaesthetized monkey. Brain Res. 1972 Oct 13;45(1):278–281. doi: 10.1016/0006-8993(72)90238-7. [DOI] [PubMed] [Google Scholar]
  38. Vincent J. D., Hayward J. N. Activity of single cells in the osmoreceptor-supraoptic nuclear complex in the hypothalamus of the waking rhesus monkey. Brain Res. 1970 Sep 29;23(1):105–108. doi: 10.1016/0006-8993(70)90354-9. [DOI] [PubMed] [Google Scholar]
  39. Wakerly J. B., Lincoln D. W. Phasic discharge of antidromically identified units in the paraventricular nucleus of the hypothalamus. Brain Res. 1971 Jan 8;25(1):192–194. doi: 10.1016/0006-8993(71)90580-4. [DOI] [PubMed] [Google Scholar]
  40. Wang M. B. The distribution and control of osmosensitive cells within the hypothalamus of the opossum (Didelphis virginiana). Neuroendocrinology. 1969;4(1):51–63. doi: 10.1159/000121738. [DOI] [PubMed] [Google Scholar]
  41. Watkins W. B., Evans J. J. Demonstration of neurophysin in the hypothalamo-neurohypophysial system of the normal and dehydrated rat by the use of cross-species reactive anti-neurophysins. Z Zellforsch Mikrosk Anat. 1972;131(2):149–170. doi: 10.1007/BF00306924. [DOI] [PubMed] [Google Scholar]
  42. Zimmerman E. A., Hsu K. C., Robinson A. G., Carmel P. W., Frantz A. G., Tannenbaum M. Studies of neurophysin secreting neurons with immunoperoxidase techniques employing antibody to bovine neurophysin. I. Light microscopic findings in monkey and bovine tissues. Endocrinology. 1973 Mar;92(3):931–940. doi: 10.1210/endo-92-3-931. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES