Abstract
1. The action potential duration of anoxic guinea-pig ventricular muscle was related to ATP generated by glycolysis. In 50 mM glucose medium the action potential duration was maintained; in 5 mM glucose medium the action potential duration shortened, the glycolytic rate declined and the ATP content was reduced.
2. The action potential amplitude was related to the metabolic state of the muscle but not to the intracellular sodium concentration.
3. It is suggested that changes in the action potential duration and overshoot in anoxic muscle may be due to an influence of metabolism on the slow inward current.
4. Anoxic muscle incubated for 8 hr in 5 mM glucose medium had an Em of -77·1 mV compared to -81·1 mV in fresh muscle. The calculated Ek of anoxic muscle was -47·4 mV.
5. The resting potential of anoxic muscle was separated into two components, one dependent on potassium distribution and the other on the activity of an electrogenic sodium pump.
6. The electrogenic pump component was stimulated upon raising the glucose concentration of the medium or upon raising the external potassium concentration.
7. The electrogenic pump component was inhibited by ouabain or by reduction of the temperature from 35 to 8° C.
Full text
PDF























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beeler G. W., Jr, Reuter H. Membrane calcium current in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):191–209. doi: 10.1113/jphysiol.1970.sp009056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bielawski J., Thompson T. E., Lehninger A. L. The effect of 2,4-dinitrophenol on the electrical resistance of phospholipid bilayer membranes. Biochem Biophys Res Commun. 1966 Sep 22;24(6):948–954. doi: 10.1016/0006-291x(66)90342-1. [DOI] [PubMed] [Google Scholar]
- Coraboeuf E., Vassort G. Effects of some inhibitors of ionic permeabilities on ventricular action potential and contraction of rat and guinea-pig hearts. J Electrocardiol. 1968;1(1):19–29. doi: 10.1016/s0022-0736(68)80005-6. [DOI] [PubMed] [Google Scholar]
- DE MELLO W. C. Metabolism and electrical activity of the heart: action of 2-4-dinitrophenol and ATP. Am J Physiol. 1959 Feb;196(2):377–380. doi: 10.1152/ajplegacy.1959.196.2.377. [DOI] [PubMed] [Google Scholar]
- DUDEL J., TRAUTWEIN W. Aktionspotential und Kontraktion des Herzmuskels im Sauerstoffmangel. Pflugers Arch. 1956;263(1):23–32. doi: 10.1007/BF00412455. [DOI] [PubMed] [Google Scholar]
- Giebisch G., Weidmann S. Membrane currents in mammalian ventricular heart muscle fibers using a voltage-clamp technique. J Gen Physiol. 1971 Mar;57(3):290–296. doi: 10.1085/jgp.57.3.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glitsch H. G. Uber das Membranpotential des Meerschweinchenvorhofes nach Hypothermie. Pflugers Arch. 1969;307(1):29–46. doi: 10.1007/BF00589457. [DOI] [PubMed] [Google Scholar]
- Godfraind J. M., Krnjević K., Pumain R. Unexpected features of the action of dinitrophenol on cortical neurones. Nature. 1970 Nov 7;228(5271):562–564. doi: 10.1038/228562a0. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLLANDER P. B., WEBB J. L. Metabolic aspects of the relationship between the contractility and membrane potentials of the rat atrium. Circ Res. 1956 Sep;4(5):618–626. doi: 10.1161/01.res.4.5.618. [DOI] [PubMed] [Google Scholar]
- Hunter E. G., McDonald T. F., MacLeod D. P. Metabolic depression and myocardial potassium. Pflugers Arch. 1972;335(4):266–278. doi: 10.1007/BF00586217. [DOI] [PubMed] [Google Scholar]
- Keynes R. D., Steinhardt R. A. The components of the sodium efflux in frog muscle. J Physiol. 1968 Oct;198(3):581–599. doi: 10.1113/jphysiol.1968.sp008627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klahr S., Bourgoignie J., Bricker N. S. Coupling of anaerobic metabolism to anaerobic sodium transport: a high energy intermediate. Nature. 1968 May 25;218(5143):769–770. doi: 10.1038/218769a0. [DOI] [PubMed] [Google Scholar]
- MACLEOD D. P., DANIEL E. E. INFLUENCE OF GLUCOSE ON THE TRANSMEMBRANE ACTION POTENTIAL OF ANOXIC PAPILLARY MUSCLE. J Gen Physiol. 1965 May;48:887–899. doi: 10.1085/jgp.48.5.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacLeod D. P., Prasad K. Influence of glucose on the transmembrane action potential of papillary muscle. Effects of concentration, phlorizin and insulin, nonmetabolizable sugars, and stimulators of glycolysis. J Gen Physiol. 1969 Jun;53(6):792–815. doi: 10.1085/jgp.53.6.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marmor M. F., Gorman A. L. Membrane potential as the sum of ionic and metabolic components. Science. 1970 Jan 2;167(3914):65–67. doi: 10.1126/science.167.3914.65. [DOI] [PubMed] [Google Scholar]
- Mascher D., Peper K. Two components of inward current in myocardial muscle fibers. Pflugers Arch. 1969;307(3):190–203. doi: 10.1007/BF00592084. [DOI] [PubMed] [Google Scholar]
- McDonald T. F., Hunter E. G., MacLeod D. P. Adenosinetriphosphate partition in cardiac muscle with respect to transmembrane electrical activity. Pflugers Arch. 1971;322(2):95–108. doi: 10.1007/BF00592292. [DOI] [PubMed] [Google Scholar]
- McDonald T. F., MacLeod D. P. Anoxia-recovery cycle in ventricular muscle: action potential duration, contractility and ATP content. Pflugers Arch. 1971;325(4):305–322. doi: 10.1007/BF00592172. [DOI] [PubMed] [Google Scholar]
- McDonald T. F., MacLeod D. P. Effects of manganese, glucose and isoprenaline on the action potential of anoxic ventricular muscle. Naunyn Schmiedebergs Arch Pharmacol. 1972;275(2):169–181. doi: 10.1007/BF00508905. [DOI] [PubMed] [Google Scholar]
- McDonald T. F., MacLeod D. P. Maintenance of resting potential in anoxic guinea pig ventricular muscle: electrogenic sodium pumping. Science. 1971 May 7;172(3983):570–572. doi: 10.1126/science.172.3983.570. [DOI] [PubMed] [Google Scholar]
- McDonald T. F., MacLeod D. P. The effect of 2,4-dinitrophenol on electrical and mechanical activity, metabolism and ion movements in guinea-pig ventricular muscle. Br J Pharmacol. 1972 Apr;44(4):711–722. doi: 10.1111/j.1476-5381.1972.tb07309.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niedergerke R., Orkand R. K. The dependence of the action potential of the frog's heart on the external and intracellular sodium concentration. J Physiol. 1966 May;184(2):312–334. doi: 10.1113/jphysiol.1966.sp007917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble D., Tsien R. W. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol. 1969 Jan;200(1):205–231. doi: 10.1113/jphysiol.1969.sp008689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble D., Tsien R. W. Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current. J Physiol. 1969 Jan;200(1):233–254. doi: 10.1113/jphysiol.1969.sp008690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAGE E., STORN S. R. CAT HEART MUSCLE IN VITRO. 8. ACTIVE TRANSPORT OF SODIUM IN PAPILLARY MUSCLES. J Gen Physiol. 1965 May;48:957–972. doi: 10.1085/jgp.48.5.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad K., MacLeod D. P. Influence of glucose on the transmembrane action potential of guinea-pig papillary muscle. Metabolic inhibitors, ouabain, and calcium chloride, and their interaction with glucose, sympathomimetic amines, and aminophylline. Circ Res. 1969 Jun;24(6):939–950. doi: 10.1161/01.res.24.6.939. [DOI] [PubMed] [Google Scholar]
- Rang H. P., Ritchie J. M. On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J Physiol. 1968 May;196(1):183–221. doi: 10.1113/jphysiol.1968.sp008502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHREIBER S. S. Potassium and sodium exchange in the working frog heart; effects of overwork, external concentrations of potassium and ouabain. Am J Physiol. 1956 May;185(2):337–347. doi: 10.1152/ajplegacy.1956.185.2.337. [DOI] [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- Tamai T., Kagiyama S. Studies of cat heart muscle during recovery after prolonged hypothermia. Hyperpolarization of cell membranes and its dependence on the sodium pump with electrogenic characteristics. Circ Res. 1968 Mar;22(3):423–433. doi: 10.1161/01.res.22.3.423. [DOI] [PubMed] [Google Scholar]
- Tarr M. Two inward currents in frog atrial muscle. J Gen Physiol. 1971 Nov;58(5):523–543. doi: 10.1085/jgp.58.5.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor G. S., Paton D. M., Daniel E. E. Characteristics of electrogenic sodium pumping in rat myometrium. J Gen Physiol. 1970 Sep;56(3):360–375. doi: 10.1085/jgp.56.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas R. C. Intracellular sodium activity and the sodium pump in snail neurones. J Physiol. 1972 Jan;220(1):55–71. doi: 10.1113/jphysiol.1972.sp009694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vassort G., Rougier O., Garnier D., Sauviat M. P., Coraboeuf E., Gargouïl Y. M. Effects of adrenaline on membrane inward currents during the cardiac action potential. Pflugers Arch. 1969;309(1):70–81. doi: 10.1007/BF00592283. [DOI] [PubMed] [Google Scholar]
- Vick R. L., Hazlewood C. F., Nichols B. L. Distribution of potassium, sodium, and chloride in canine Purkinje and ventricular tissues. Relation to cellular potential. Circ Res. 1970 Aug;27(2):159–169. doi: 10.1161/01.res.27.2.159. [DOI] [PubMed] [Google Scholar]
- WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOODBURY J. W., BRADY A. J. Intracellular recording from moving tissues with a flexibly mounted ultramicroelectrode. Science. 1956 Jan 20;123(3186):100–101. doi: 10.1126/science.123.3186.100-a. [DOI] [PubMed] [Google Scholar]
- Yeh B. K., Hoffman B. F. The ionic basis of electrical activity in embryonic cardiac muscle. J Gen Physiol. 1968 Oct;52(4):666–681. doi: 10.1085/jgp.52.4.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- den Hertog A., Greengard P., Ritchie J. M. On the metabolic basis of nervous activity. J Physiol. 1969 Oct;204(3):511–521. doi: 10.1113/jphysiol.1969.sp008928. [DOI] [PMC free article] [PubMed] [Google Scholar]