Abstract
1. The effects of disulphide bond reduction and reoxidation on synaptic transmission in the frog neuromuscular preparation have been studied.
2. The amplitudes of end-plate potentials (e.p.p.s) and miniature e.p.p.s (m.e.p.p.s) were decreased irreversibly by the reducing agent dithiothreitol (DTT). Recovery of e.p.p.s and m.e.p.p.s could be achieved, however, by subsequent reoxidation employing 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB).
3. No change in e.p.p. quantal content was produced by treatment with DTT and DTNB. The reduction of m.e.p.p. frequency found in DTT was attributed mainly to our inability to distinguish small m.e.p.p.s from the background noise. However, a genuine reduction in m.e.p.p.s frequency could not be ruled out.
4. The `reactive' disulphide bond which is acted upon by DTT and DTNB could be located within a few Ångstrom from the anionic site of the receptor for acetylcholine (ACh), by employing the active-site directed reagent bromoacetylcholamine (BACA).
5. Reduction of the `reactive' disulphide bond did not cause changes in the post-synaptic membrane input impedance nor was the e.p.p. reversal potential affected. Treatment with DTT and DTNB was found to modify only the conductance of the synaptic membrane.
6. No synaptic effects were produced by DTT in a non-cholinergic synapse, the crab neuromuscular preparation.
7. It is concluded that the receptor for ACh, besides including the well-known anionic site for binding quaternary ammonium groups, also contains a unique `reactive' disulphide bond. This bond controls synaptic conductance but not the relative permeability of the synaptic membrane to Na+ and K+. It is not yet clear whether the `reactive' bond controls the interaction of ACh with the receptor or the translation of this interaction into ionic permeability changes.
Full text
PDF




















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albuquerque E. X., Sokoll M. D., Sonesson B., Thesleff S. Studies on the nature of the cholinergic receptor. Eur J Pharmacol. 1968 Aug;4(1):40–46. doi: 10.1016/0014-2999(68)90007-1. [DOI] [PubMed] [Google Scholar]
- CLELAND W. W. DITHIOTHREITOL, A NEW PROTECTIVE REAGENT FOR SH GROUPS. Biochemistry. 1964 Apr;3:480–482. doi: 10.1021/bi00892a002. [DOI] [PubMed] [Google Scholar]
- Changeux J. P., Kasai M., Lee C. Y. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1241–1247. doi: 10.1073/pnas.67.3.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Changeux J. P., Podleski T. R., Wofsy L. Affinity labeling of the acetylcholine-receptor. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2063–2070. doi: 10.1073/pnas.58.5.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEL CASTILLO J., KATZ B. Biophysical aspects of neuro-muscular transmission. Prog Biophys Biophys Chem. 1956;6:121–170. [PubMed] [Google Scholar]
- De Robertis E. Molecular biology of synaptic receptors. Science. 1971 Mar 12;171(3975):963–971. doi: 10.1126/science.171.3975.963. [DOI] [PubMed] [Google Scholar]
- Del Castillo J., Bartels E., Sobrino J. A. Microelectrophoretic application of cholinergic compounds, protein oxidizing agents, and mercurials to the chemically excitable membrane of the electroplax. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2081–2085. doi: 10.1073/pnas.69.8.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Castillo J., Escobar I., Gijón E. Effects of the electrophoretic application of sulfhydryl reagents to the end-plate receptors. Int J Neurosci. 1971 Feb;1(3):199–209. doi: 10.3109/00207457109146971. [DOI] [PubMed] [Google Scholar]
- ELMQVIST D., QUASTEL D. M. PRESYNAPTIC ACTION OF HEMICHOLINIUM AT THE NEUROMUSCULAR JUNCTION. J Physiol. 1965 Apr;177:463–482. doi: 10.1113/jphysiol.1965.sp007605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg R. S., Howell J. N., Vaughan P. C. The maintenance of resting potentials in glycerol-treated muscle fibres. J Physiol. 1971 May;215(1):95–102. doi: 10.1113/jphysiol.1971.sp009459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eldefrawi M. E., Eldefrawi A. T., O'Brien R. D. Binding sites for cholinergic ligands in a particulate fraction of Electrophorus electroplax. Proc Natl Acad Sci U S A. 1971 May;68(5):1047–1050. doi: 10.1073/pnas.68.5.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein R., Grundfest H. Desensitization of gamma aminobutyric acid (GABA) receptors in muscle fibers of the crab Cancer borealis. J Gen Physiol. 1970 Jul;56(1):33–45. doi: 10.1085/jgp.56.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feltz A., Mallart A. An analysis of acetylcholine responses of junctional and extrajunctional receptors of frog muscle fibres. J Physiol. 1971 Oct;218(1):85–100. doi: 10.1113/jphysiol.1971.sp009605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gage P. W., McBurney R. N. Miniature end-plate currents and potentials generated by quanta of acetylcholine in glycerol-treated toad sartorius fibres. J Physiol. 1972 Oct;226(1):79–94. doi: 10.1113/jphysiol.1972.sp009974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubbard J. I., Willis W. D. The effects of depolarization of motor nerve terminals upon the release of transmitter by nerve impulses. J Physiol. 1968 Feb;194(2):381–405. doi: 10.1113/jphysiol.1968.sp008414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ B., THESLEFF S. On the factors which determine the amplitude of the miniature end-plate potential. J Physiol. 1957 Jul 11;137(2):267–278. doi: 10.1113/jphysiol.1957.sp005811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karlin A., Bartels E. Effects of blocking sulfhydryl groups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax. Biochim Biophys Acta. 1966 Nov 8;126(3):525–535. doi: 10.1016/0926-6585(66)90010-0. [DOI] [PubMed] [Google Scholar]
- Karlin A., Winnik M. Reduction and specific alkylation of the receptor for acetylcholine. Proc Natl Acad Sci U S A. 1968 Jun;60(2):668–674. doi: 10.1073/pnas.60.2.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B., Miledi R. The statistical nature of the acetycholine potential and its molecular components. J Physiol. 1972 Aug;224(3):665–699. doi: 10.1113/jphysiol.1972.sp009918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiefer H., Lindstrom J., Lennox E. S., Singer S. J. Photo-affinity labeling of specific acetylcholine-binding sites on membranes. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1688–1694. doi: 10.1073/pnas.67.4.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeno T., Edwards C., Hashimura S. Difference in effects of end-plate potentials between procaine and lidocaine as revealed by voltage-clamp experiments. J Neurophysiol. 1971 Jan;34(1):32–46. doi: 10.1152/jn.1971.34.1.32. [DOI] [PubMed] [Google Scholar]
- Magleby K. L., Stevens C. F. A quantitative description of end-plate currents. J Physiol. 1972 May;223(1):173–197. doi: 10.1113/jphysiol.1972.sp009840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meiri U., Rahamimoff R. Activation of transmitter release by strontium and calcium ions at the neuromuscular junction. J Physiol. 1971 Jul;215(3):709–726. doi: 10.1113/jphysiol.1971.sp009493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miledi R., Molinoff P., Potter L. T. Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature. 1971 Feb 19;229(5286):554–557. doi: 10.1038/229554a0. [DOI] [PubMed] [Google Scholar]
- Rang H. P., Ritter J. M. The effect of disulfide bond reduction on the properties of cholinergic receptors in chick muscle. Mol Pharmacol. 1971 Nov;7(6):620–631. [PubMed] [Google Scholar]
- Ross D. H., Triggle D. J. Further differentiation of cholinergic receptors in leech muscle. Biochem Pharmacol. 1972 Sep 15;21(18):2533–2536. doi: 10.1016/0006-2952(72)90426-1. [DOI] [PubMed] [Google Scholar]
- Silman I., Karlin A. Acetylcholine receptor: covalent attachment of depolarizing groups at the active site. Science. 1969 Jun 20;164(3886):1420–1421. doi: 10.1126/science.164.3886.1420. [DOI] [PubMed] [Google Scholar]
- TAKEUCHI A., TAKEUCHI N. Active phase of frog's end-plate potential. J Neurophysiol. 1959 Jul;22(4):395–411. doi: 10.1152/jn.1959.22.4.395. [DOI] [PubMed] [Google Scholar]
- TAKEUCHI A., TAKEUCHI N. On the permeability of end-plate membrane during the action of transmitter. J Physiol. 1960 Nov;154:52–67. doi: 10.1113/jphysiol.1960.sp006564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAKEUCHI A., TAKEUCHI N. THE EFFECT ON CRAYFISH MUSCLE OF IONTOPHORETICALLY APPLIED GLUTAMATE. J Physiol. 1964 Mar;170:296–317. doi: 10.1113/jphysiol.1964.sp007332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi A., Takeuchi N. A study of the inhibitory action of gamma-amino-butyric acid on neuromuscular transmission in the crayfish. J Physiol. 1966 Mar;183(2):418–432. doi: 10.1113/jphysiol.1966.sp007874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi A., Takeuchi N. On the permeability of the presynaptic terminal of the crayfish neuromuscular junction during synaptic inhibition and the action of gamma-aminobutyric acid. J Physiol. 1966 Mar;183(2):433–449. doi: 10.1113/jphysiol.1966.sp007875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waser P. G., Hofmann A., Hopff W. "Affinity Labelling" de cholinergischen Rezeptors der motorischen Endplatte mit Dizo-Acetylcholin. Experientia. 1970 Dec 15;26(12):1342–1343. doi: 10.1007/BF02113018. [DOI] [PubMed] [Google Scholar]
- Werman R., Carlen P. L., Kushnir M., Kosower E. M. Effect of the thiol-oxidizing agent, diamide, on acetylcholine release at the frog endplate. Nat New Biol. 1971 Sep 22;233(38):120–121. doi: 10.1038/newbio233120a0. [DOI] [PubMed] [Google Scholar]
- Werman R. The specificity of molecular processes involved in neural transmission. J Theor Biol. 1965 Nov;9(3):471–477. doi: 10.1016/0022-5193(65)90044-5. [DOI] [PubMed] [Google Scholar]