Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1973 Oct;234(1):95–118. doi: 10.1113/jphysiol.1973.sp010336

Receptive field analysis: responses to moving visual contours by single lateral geniculate neurones in the cat

B Dreher, K J Sanderson
PMCID: PMC1350653  PMID: 4766224

Abstract

1. Responses of single geniculate cells to moving light and dark bars and light/dark edges were studied in cats anaesthetized with nitrous oxide/oxygen (70%/30%).

2. Over 95% (230 out of 241) of geniculate cells had antagonistic centre-surround receptive fields. Their responses could be characterized as centre-activated or centre-suppressed depending on the receptive field type (ON- or OFF-centre) and the contrast between stimulus and the background (brighter or darker than the background). Moving light and dark edges evoked responses which were very similar to the responses evoked by these stimuli in simple cells of striate cortex.

3. A number of cells (45) with antagonistic centre-surround receptive fields were classified according to their X/Y (sustained/transient) properties. Units with sustained properties (X-cells) did not increase their firing rate with an increase of stimulus velocity and some of them showed a clear-cut preference for slow movement (around 1-2°/sec). On the other hand, units with transient properties (Y-cells) showed a clear-cut preference for fast-moving stimuli (50-100°/sec.)

4. Elongation of the stimulus beyond the antagonistic surround in both X- and Y-cells produced a clear-cut reduction of amplitude of both centre and surround components of the response. Thus the existence of a suppressive field component beyond the antagonistic surround is confirmed.

5. About 5% of cells had receptive fields which did not have an antagonistic centre-surround organization but gave a mixed ON-OFF discharge from the central region of the field. Around the central region there was a silent suppressive zone. These units were not directionally selective, responded preferentially to fast-moving stimuli (25-100°/sec) and had a substantial (spontaneous) maintained activity.

Full text

PDF
95

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BISHOP P. O., BURKE W., DAVIS R. Synapse discharge by single fibre in mammalian visual system. Nature. 1958 Sep 13;182(4637):728–730. doi: 10.1038/182728b0. [DOI] [PubMed] [Google Scholar]
  2. Bishop P. O., Coombs J. S., Henry G. H. Interaction effects of visual contours on the discharge frequency of simple striate neurones. J Physiol. 1971 Dec;219(3):659–687. doi: 10.1113/jphysiol.1971.sp009682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bishop P. O., Coombs J. S., Henry G. H. Receptive fields of simple cells in the cat striate cortex. J Physiol. 1973 May;231(1):31–60. doi: 10.1113/jphysiol.1973.sp010218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bishop P. O., Coombs J. S., Henry G. H. Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones. J Physiol. 1971 Dec;219(3):625–657. doi: 10.1113/jphysiol.1971.sp009681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bishop P. O., Henry G. H., Smith C. J. Binocular interaction fields of single units in the cat striate cortex. J Physiol. 1971 Jul;216(1):39–68. doi: 10.1113/jphysiol.1971.sp009508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burke W., Jervie Sefton A. Inhibitory mechanisms in lateral geniculate nucleus of rat. J Physiol. 1966 Nov;187(1):231–246. doi: 10.1113/jphysiol.1966.sp008085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cleland B. G., Dubin M. W., Levick W. R. Simultaneous recording of input and output of lateral geniculate neurones. Nat New Biol. 1971 Jun 9;231(23):191–192. doi: 10.1038/newbio231191a0. [DOI] [PubMed] [Google Scholar]
  8. Cleland B. G., Dubin M. W., Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 1971 Sep;217(2):473–496. doi: 10.1113/jphysiol.1971.sp009581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Famiglietti E. V., Jr Dendro-dendritic synapses in the lateral geniculate nucleus of the cat. Brain Res. 1970 Jun 3;20(2):181–191. doi: 10.1016/0006-8993(70)90287-8. [DOI] [PubMed] [Google Scholar]
  11. Fukada Y. Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Res. 1971 Mar;11(3):209–226. doi: 10.1016/0042-6989(71)90186-6. [DOI] [PubMed] [Google Scholar]
  12. Guillery R. W., Scott G. L. Observations on synaptic patterns in the dorsal lateral geniculate nucleus of the cat: the C laminae and the perikaryal synapses. Exp Brain Res. 1971 Feb 25;12(2):184–203. doi: 10.1007/BF00234315. [DOI] [PubMed] [Google Scholar]
  13. HUBEL D. H., WIESEL T. N. Integrative action in the cat's lateral geniculate body. J Physiol. 1961 Feb;155:385–398. doi: 10.1113/jphysiol.1961.sp006635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoffmann K. P., Stone J., Sherman S. M. Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J Neurophysiol. 1972 Jul;35(4):518–531. doi: 10.1152/jn.1972.35.4.518. [DOI] [PubMed] [Google Scholar]
  15. Hoffmann K. P. The retinal input to the superior colliculus in the cat. Invest Ophthalmol. 1972 Jun;11(6):467–473. [PubMed] [Google Scholar]
  16. Joshua D. E., Bishop P. O. Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Exp Brain Res. 1970;10(4):389–416. doi: 10.1007/BF02324766. [DOI] [PubMed] [Google Scholar]
  17. KOZAK W., RODIECK R. W., BISHOP P. O. RESPONSES OF SINGLE UNITS IN LATERAL GENICULATE NUCLEUS OF CAT TO MOVING VISUAL PATTERNS. J Neurophysiol. 1965 Jan;28:19–47. doi: 10.1152/jn.1965.28.1.19. [DOI] [PubMed] [Google Scholar]
  18. Kinston W. J., Vadas M. A., Bishop P. O. Multiple projection of the visual field to the medical portion of the dorsal lateral geniculate nucleus and the adjacent nuclei of the thalamus of the cat. J Comp Neurol. 1969 Jul;136(3):295–315. doi: 10.1002/cne.901360304. [DOI] [PubMed] [Google Scholar]
  19. Levick W. R. Another tungsten microelectrode. Med Biol Eng. 1972 Jul;10(4):510–515. doi: 10.1007/BF02474199. [DOI] [PubMed] [Google Scholar]
  20. Levick W. R., Cleland B. G., Dubin M. W. Lateral geniculate neurons of cat: retinal inputs and physiology. Invest Ophthalmol. 1972 May;11(5):302–311. [PubMed] [Google Scholar]
  21. Montero V. M., Robles L. Saccadic modulation of cell discharges in the lateral geniculate nucleus. Vision Res. 1971;Suppl 3:253–268. doi: 10.1016/0042-6989(71)90044-7. [DOI] [PubMed] [Google Scholar]
  22. Peters A., Palay S. L. The morphology of laminae A and A1 of the dorsal nucleus of the lateral geniculate body of the cat. J Anat. 1966 Jul;100(Pt 3):451–486. [PMC free article] [PubMed] [Google Scholar]
  23. Pettigrew J. D., Nikara T., Bishop P. O. Responses to moving slits by single units in cat striate cortex. Exp Brain Res. 1968;6(4):373–390. doi: 10.1007/BF00233185. [DOI] [PubMed] [Google Scholar]
  24. Rodieck R. W., Pettigrew J. D., Bishop P. O., Nikara T. Residual eye movements in receptive-field studies of paralyzed cats. Vision Res. 1967 Jan;7(1):107–110. doi: 10.1016/0042-6989(67)90031-4. [DOI] [PubMed] [Google Scholar]
  25. Rodieck R. W., Stone J. Analysis of receptive fields of cat retinal ganglion cells. J Neurophysiol. 1965 Sep;28(5):832–849. doi: 10.1152/jn.1965.28.5.833. [DOI] [PubMed] [Google Scholar]
  26. Rodieck R. W., Stone J. Response of cat retinal ganglion cells to moving visual patterns. J Neurophysiol. 1965 Sep;28(5):819–832. doi: 10.1152/jn.1965.28.5.819. [DOI] [PubMed] [Google Scholar]
  27. Sanderson K. J., Bishop P. O., Darian-Smith I. The properties of the binocular receptive fields of lateral geniculate neurons. Exp Brain Res. 1971;13(2):178–207. doi: 10.1007/BF00234085. [DOI] [PubMed] [Google Scholar]
  28. Sanderson K. J., Darian-Smith I., Bishop P. O. Binocular corresponding receptive fields of single units in the cat dorsal lateral geniculate nucleus. Vision Res. 1969 Oct;9(10):1297–1303. doi: 10.1016/0042-6989(69)90117-5. [DOI] [PubMed] [Google Scholar]
  29. Singer W., Creutzfeldt O. D. Reciprocal lateral inhibition of on- and off-center neurones in the lateral geniculate body of the cat. Exp Brain Res. 1970;10(3):311–330. doi: 10.1007/BF00235054. [DOI] [PubMed] [Google Scholar]
  30. Singer W. Inhibitory binocular interaction in the lateral geniculate body of the cat. Brain Res. 1970 Feb 17;18(1):165–170. doi: 10.1016/0006-8993(70)90463-4. [DOI] [PubMed] [Google Scholar]
  31. Stone J., Fabian M. Specialized receptive fields of the cat's retina. Science. 1966 May 27;152(3726):1277–1279. doi: 10.1126/science.152.3726.1277. [DOI] [PubMed] [Google Scholar]
  32. Stone J., Hoffmann K. P. Very slow-conducting ganglion cells in the cat's retina: a major, new functional type? Brain Res. 1972 Aug 25;43(2):610–616. doi: 10.1016/0006-8993(72)90416-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES