Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1973 Oct;234(1):217–227. doi: 10.1113/jphysiol.1973.sp010342

Membrane potential measurement in parotid acinar cells

G L Pedersen, O H Petersen
PMCID: PMC1350659  PMID: 4797341

Abstract

1. Intracellular recording of membrane potential was made from acinar cells of the isolated mouse parotid gland superfused with physiological salt solutions.

2. The mean acinar resting membrane potential was - 68·5 mV during superfusion with Krebs—Henseleit solution. Shift of the superfusion solution to one containing ACh or adrenaline (10-5 M) always caused a transient hyperpolarization (about 10-15 mV).

3. The membrane potential was mainly dependent on the extracellular K concentration ([K]o). Increasing [K]o tenfold decreased the membrane potential by 50 mV. This depolarization was not mediated by ACh release from depolarized nerve endings, since it was seen in the presence of atropine (1·4 × 10-6 M) and not caused by the accompanying reduction in [Na]o to 40 mM caused only a small depolarization (less than 10 mV).

4. When the superfusion solution was shifted, during intracellular recording, from a normal Krebs—Henseleit solution ([K] = 4·7 mM) to a K-free solution, a hyperpolarization of about 8 mV was measured. Reintroduction of the normal K-containing solution after a longer period of K deprivation (30-70 min) resulted in a short-lasting pronounced hyperpolarization (about 20 mV) which could be blocked by Strophanthin-G (10-3 M).

5. In contrast to previous reports, the present findings indicate that the membrane potential of salivary acinar cells is similar, with respect to magnitude and K-dependence, to that of cells of more thoroughly investigated tissues, such as muscle and nerve, and that the membrane Na—K pump is electrogenic, at least when the cells have been loaded with Na.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argent B. E., Case R. M., Scratcherd T. Stimulation of amylase secretion from the perfused cat pancreas by potassium and other alkali metal ions. J Physiol. 1971 Aug;216(3):611–624. doi: 10.1113/jphysiol.1971.sp009543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURGEN A. S. The secretion of potassium in saliva. J Physiol. 1956 Apr 27;132(1):20–39. doi: 10.1113/jphysiol.1956.sp005500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Batzri S., Selinger Z., Schramm M., Robinovitch M. R. Potassium release mediated by the epinephrine -receptor in rat parotid slices. Properties and relation to enzyme secretion. J Biol Chem. 1973 Jan 10;248(1):361–368. [PubMed] [Google Scholar]
  4. Blair-West J. R., Coghlan J. P., Denton D. A., Nelson J., Wright R. D., Yamauchi A. Ionic, histological and vascular factors in the reaction of the sheep's parotid to high and low mineralocorticoid status. J Physiol. 1969 Dec;205(3):563–579. doi: 10.1113/jphysiol.1969.sp008983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bolton T. B. Effects of electrogenic sodium pumping on the membrane potential of longitudinal smooth muscle from terminal ileum of guinea-pig. J Physiol. 1973 Feb;228(3):693–712. doi: 10.1113/jphysiol.1973.sp010107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Creed K. E., Wilson J. A. The latency of response of secretory acinar cells to nerve stimulation in the submandibular gland of the cat. Aust J Exp Biol Med Sci. 1969 Feb;47(1):135–144. doi: 10.1038/icb.1969.13. [DOI] [PubMed] [Google Scholar]
  7. Dean P. M., Matthews E. K. Glucose-induced electrical activity in pancreatic islet cells. J Physiol. 1970 Sep;210(2):255–264. doi: 10.1113/jphysiol.1970.sp009207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dean P. M., Matthews E. K. Pancreatic acinar cells: measurement of membrane potential and miniature depolarization potentials. J Physiol. 1972 Aug;225(1):1–13. doi: 10.1113/jphysiol.1972.sp009926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fritz M. E., Botelho S. Y. Membrane potentials in unstimulated parotid gland of the cat. Am J Physiol. 1969 May;216(5):1180–1183. doi: 10.1152/ajplegacy.1969.216.5.1180. [DOI] [PubMed] [Google Scholar]
  10. Fritz M. E. Cationic dependence of resting membrane potentials of parotid acinar cells. Am J Physiol. 1972 Sep;223(3):644–647. doi: 10.1152/ajplegacy.1972.223.3.644. [DOI] [PubMed] [Google Scholar]
  11. Haylett D. G., Jenkinson D. H. Effects of noradrenaline on potassium reflux, membrane potential and electrolyte levels in tissue slices prepared from guinea-pig liver. J Physiol. 1972 Sep;225(3):721–750. doi: 10.1113/jphysiol.1972.sp009966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henriques B. L., Sperling A. L. Marking of sited cells after electrophysiologic study. J Appl Physiol. 1966 Jul;21(4):1247–1250. doi: 10.1152/jappl.1966.21.4.1247. [DOI] [PubMed] [Google Scholar]
  13. LUNDBERG A. Electrophysiology of salivary glands. Physiol Rev. 1958 Jan;38(1):21–40. doi: 10.1152/physrev.1958.38.1.21. [DOI] [PubMed] [Google Scholar]
  14. LUNDBERG A. The electrophysiology of the submaxillary gland of the cat. Acta Physiol Scand. 1955 Dec 22;35(1):1–25. doi: 10.1111/j.1748-1716.1955.tb01258.x. [DOI] [PubMed] [Google Scholar]
  15. Martin C. J., Young J. A. Electrolyte concentrations in primary and final saliva of the rat sublingual gland studied by micropuncture and catheterization techniques. Pflugers Arch. 1971;324(4):344–360. doi: 10.1007/BF00592462. [DOI] [PubMed] [Google Scholar]
  16. Matthews E. K. Membrane potential measurement in cells of the adrenal gland. J Physiol. 1967 Mar;189(1):139–148. doi: 10.1113/jphysiol.1967.sp008159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matthews E. K., Petersen O. H. Pancreatic acinar cells: ionic dependence of the membrane potential and acetycholine-induced depolarization. J Physiol. 1973 Jun;231(2):283–295. doi: 10.1113/jphysiol.1973.sp010233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matthews E. K., Williams J. A. Membrane depolarization, cyclic AMP and glycerol release by brown fat in vitro. J Physiol. 1972 Dec;227(2):17P–18P. [PubMed] [Google Scholar]
  19. Nishiyama A., Kagayama M. Biphasic secretory potentials in cat and rabbit submaxillary glands. Experientia. 1973 Feb 15;29(2):161–163. doi: 10.1007/BF01945449. [DOI] [PubMed] [Google Scholar]
  20. Petersen O. H. Initiation of salt and water transport in mammalian salivary glands by acetylcholine. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):307–314. doi: 10.1098/rstb.1971.0096. [DOI] [PubMed] [Google Scholar]
  21. Petersen O. H. Membrane potential measurement in mouse salivary gland cells. Experientia. 1973 Feb 15;29(2):160–161. doi: 10.1007/BF01945448. [DOI] [PubMed] [Google Scholar]
  22. Petersen O. H., Poulsen J. H., Thorn N. A. Secretory potentials, secretory rate and water permeability of the duct system in the cat submandibular gland during perfusion with calcium-free Locke's solution. Acta Physiol Scand. 1967 Oct-Nov;71(2):203–210. doi: 10.1111/j.1748-1716.1967.tb03726.x. [DOI] [PubMed] [Google Scholar]
  23. Petersen O. H. Some factors influencing stimulation-induced release of potassium from the cat submandibular gland to fluid perfused through the gland. J Physiol. 1970 Jun;208(2):431–447. doi: 10.1113/jphysiol.1970.sp009129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Petersen O. H. The dependence of the transmembrane salivary secretory potential on the external potassium and sodium concentration. J Physiol. 1970 Sep;210(1):205–215. doi: 10.1113/jphysiol.1970.sp009204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SHACKLEFORD J. M., KLAPPER E. C. Structure and carbohydrate histochemistry of mammalian salivary glands. Am J Anat. 1962 Jul;111:25–47. doi: 10.1002/aja.1001110104. [DOI] [PubMed] [Google Scholar]
  26. Schneyer L. H., Schneyer C. A. Membrane potentials of salivary gland cells of rat. Am J Physiol. 1965 Dec;209(6):1304–1310. doi: 10.1152/ajplegacy.1965.209.6.1304. [DOI] [PubMed] [Google Scholar]
  27. Schneyer L. H., Yoshida Y. Secretory potentials in rat submaxillary gland. Proc Soc Exp Biol Med. 1969 Jan;130(1):192–196. doi: 10.3181/00379727-130-33519. [DOI] [PubMed] [Google Scholar]
  28. Schneyer L. H., Young J. A., Schneyer C. A. Salivary secretion of electrolytes. Physiol Rev. 1972 Jul;52(3):720–777. doi: 10.1152/physrev.1972.52.3.720. [DOI] [PubMed] [Google Scholar]
  29. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]
  30. Thomas R. C. Intracellular sodium activity and the sodium pump in snail neurones. J Physiol. 1972 Jan;220(1):55–71. doi: 10.1113/jphysiol.1972.sp009694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Williams J. A. Origin of transmembrane potentials in non-excitable cells. J Theor Biol. 1970 Aug;28(2):287–296. doi: 10.1016/0022-5193(70)90056-1. [DOI] [PubMed] [Google Scholar]
  32. Yoshimura H., Imai Y. Studies on the secretory potential of acinal cells of the dog submaxillary gland and its ionic dependency. Jpn J Physiol. 1967 Jun;17(3):280–293. doi: 10.2170/jjphysiol.17.280. [DOI] [PubMed] [Google Scholar]
  33. Young J. A., Martin C. J. The effect of a sympatho- and a parasympathomimetic drug on the electrolyte concentrations of primary and final saliva of the rat submaxillary gland. Pflugers Arch. 1971;327(4):285–302. doi: 10.1007/BF00588449. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES