Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1973 Nov;235(1):155–181. doi: 10.1113/jphysiol.1973.sp010382

Cyclic variation of potassium conductance in a burst-generating neurone in Aplysia

Douglas Junge, Cathy L Stephens
PMCID: PMC1350737  PMID: 4778133

Abstract

1. The hyperpolarization between bursts in the R 15 cell of Aplysia is accompanied by an increase in membrane slope conductance.

2. The post-burst hyperpolarization can be observed with ouabain, lithium, or potassium-free solution if artificial inward current is applied. The hyperpolarization can be observed with dinitrophenol or cooling to 10° C, with no injected current. Thus, the hyperpolarization apparently is not due to the cyclic activity of an electrogenic pump.

3. A reversal potential for the post-burst hyperpolarization can be demonstrated by passage of inward current during the inter-burst period. The reversal of direction of the potential depends on recent occurrence of a burst.

4. The reversal potential varies with external potassium concentration, but not with chloride or sodium.

5. The post-burst hyperpolarization is not blocked by external tetraethylammonium at a concentration which greatly prolongs the action potentials.

6. During the onset of spike blockage by, and recovery from, calcium-free+tetrodotoxin saline, the bursts of action potentials appear to be driven by endogenous waves of membrane potential.

7. The hyperpolarizing phase of the waves in calcium-free+tetrodotoxin medium is accompanied by an increased slope conductance.

8. A reversal potential can be demonstrated for the hyperpolarization following a wave in calcium-free+tetrodotoxin medium by applying inward current during the interwave period.

9. The waves in calcium-free+tetrodotoxin medium are blocked by ouabain but can be reinstated by artificial hyperpolarization.

10. The post-burst hyperpolarization and the post-wave hyperpolarization appear to result from a periodic increase in membrane conductance, primarily to potassium ions.

Full text

PDF
155

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airapetian S. N. O mekhanizme reguliatsii spontannoi aktivnosti gigantskikh neironov ulitki. Biofizika. 1969 Sep-Oct;14(5):866–872. [PubMed] [Google Scholar]
  2. Alving B. O. Spontaneous activity in isolated somata of Aplysia pacemaker naurons. J Gen Physiol. 1968 Jan;51(1):29–45. doi: 10.1085/jgp.51.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker P. F., Hodgkin A. L., Ridgway E. B. Depolarization and calcium entry in squid giant axons. J Physiol. 1971 Nov;218(3):709–755. doi: 10.1113/jphysiol.1971.sp009641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baylor D. A., Nicholls J. G. After-effects of nerve impulses on signalling in the central nervous system of the leech. J Physiol. 1969 Aug;203(3):571–589. doi: 10.1113/jphysiol.1969.sp008880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brodwick M. S., Junge D. Post-stimulus hyperpolarization and slow potassium conductance increase in Aplysia giant neurone. J Physiol. 1972 Jun;223(2):549–570. doi: 10.1113/jphysiol.1972.sp009862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown A. M., Sutton R. B., Walker J. L., Jr Increased chloride conductance as the proximate cause of hydrogen ion concentration effects in Aplysia neurons. J Gen Physiol. 1970 Nov;56(5):559–582. doi: 10.1085/jgp.56.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carpenter D. O., Alving B. O. A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons. J Gen Physiol. 1968 Jul;52(1):1–21. doi: 10.1085/jgp.52.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carpenter D., Gunn R. The dependence of pacemaker discharge of Aplysia neurons upon Na+ and Ca++. J Cell Physiol. 1970 Feb;75(1):121–127. doi: 10.1002/jcp.1040750114. [DOI] [PubMed] [Google Scholar]
  9. Connor J. A., Stevens C. F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol. 1971 Feb;213(1):31–53. doi: 10.1113/jphysiol.1971.sp009366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eaton D. C. Potassium ion accumulation near a pace-making cell of Aplysia. J Physiol. 1972 Jul;224(2):421–440. doi: 10.1113/jphysiol.1972.sp009903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ettienne E. M. Control of contractility in Spirostomum by dissociated calcium ions. J Gen Physiol. 1970 Aug;56(2):168–179. doi: 10.1085/jgp.56.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gage P. W., Hubbard J. I. The origin of the post-tetanic hyperpolarization of mammalian motor nerve terminals. J Physiol. 1966 May;184(2):335–352. doi: 10.1113/jphysiol.1966.sp007918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gainer H. Electrophysiological behavior of an endogenously active neurosecretory cell. Brain Res. 1972 Apr 28;39(2):403–418. doi: 10.1016/0006-8993(72)90444-1. [DOI] [PubMed] [Google Scholar]
  14. Geduldig D., Gruener R. Voltage clamp of the Aplysia giant neurone: early sodium and calcium currents. J Physiol. 1970 Nov;211(1):217–244. doi: 10.1113/jphysiol.1970.sp009276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Godfraind J. M., Kawamura H., Krnjević K., Pumain R. Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones. J Physiol. 1971 May;215(1):199–222. doi: 10.1113/jphysiol.1971.sp009465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gorman A. L., Marmor M. F. Contributions of the sodium pump and ionic gradients to the membrane potential of a molluscan neurone. J Physiol. 1970 Nov;210(4):897–917. doi: 10.1113/jphysiol.1970.sp009248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gorman A. L., Marmor M. F. Temperature dependence of the sodium-potassium permeability ratio of a molluscan neurone. J Physiol. 1970 Nov;210(4):919–931. doi: 10.1113/jphysiol.1970.sp009249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. HOLMES O. Effects of pH, changes in potassium concentration and metabolic inhibitors on the after-potentials of mammalian non-medullated nerve fibres. Arch Int Physiol Biochim. 1962 Mar;70:211–245. doi: 10.3109/13813456209092855. [DOI] [PubMed] [Google Scholar]
  20. Jahan-Parwar B., Smith M., Von Baumgarten R. Activation of neurosecretory cells in Aplysia by osphradial stimulation. Am J Physiol. 1969 May;216(5):1246–1257. doi: 10.1152/ajplegacy.1969.216.5.1246. [DOI] [PubMed] [Google Scholar]
  21. KERKUT G. A., THOMAS R. C. AN ELECTROGENIC SODIUM PUMP IN SNAIL NERVE CELLS. Comp Biochem Physiol. 1965 Jan;14:167–183. doi: 10.1016/0010-406x(65)90017-4. [DOI] [PubMed] [Google Scholar]
  22. Koike H., Brown H. M., Hagiwara S. Hyperpolarization of a barnacle photoreceptor membrane following illumination. J Gen Physiol. 1971 Jun;57(6):723–737. doi: 10.1085/jgp.57.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kuno M., Miyahara J. T., Weakly J. N. Post-tetanic hyperpolarization produced by an electrogenic pump in dorsal spinocerebellar tract neurones of the cat. J Physiol. 1970 Nov;210(4):839–855. doi: 10.1113/jphysiol.1970.sp009245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Livengood D. R., Kusano K. Evidence for an electrogenic sodium pump in follower cells of the lobster cardiac ganglion. J Neurophysiol. 1972 Mar;35(2):170–186. doi: 10.1152/jn.1972.35.2.170. [DOI] [PubMed] [Google Scholar]
  25. Lorenzo Marchiafava P. The effect of temperature change on membrane potential and conductance in Aplysia giant nerve cell. Comp Biochem Physiol. 1970 Jun 15;34(4):847–852. doi: 10.1016/0010-406x(70)91007-8. [DOI] [PubMed] [Google Scholar]
  26. Mathieu P. A., Roberge F. A. Characteristics of pacemaker oscillations in Aplysia neurons. Can J Physiol Pharmacol. 1971 Sep;49(9):787–795. doi: 10.1139/y71-108. [DOI] [PubMed] [Google Scholar]
  27. Meech R. W. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp Biochem Physiol A Comp Physiol. 1972 Jun 1;42(2):493–499. doi: 10.1016/0300-9629(72)90128-4. [DOI] [PubMed] [Google Scholar]
  28. Nakajima S., Takahashi K. Post-tetanic hyperpolarization and electrogenic Na pump in stretch receptor neurone of crayfish. J Physiol. 1966 Nov;187(1):105–127. doi: 10.1113/jphysiol.1966.sp008078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rang H. P., Ritchie J. M. On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J Physiol. 1968 May;196(1):183–221. doi: 10.1113/jphysiol.1968.sp008502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rheuben M. B. The resting potential of moth muscle fibre. J Physiol. 1972 Sep;225(3):529–554. doi: 10.1113/jphysiol.1972.sp009954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Romey G., Arvanitaki-Chalazonitis A. Contrôlr pst ls pompe à cations des modes d'activité des neurons identifiables (Aplysia) J Physiol (Paris) 1970;62 (Suppl 1):210–211. [PubMed] [Google Scholar]
  32. Russell J. M., Brown A. M. Active transport of potassium by the giant neuron of the aplysia abdominal ganglion. J Gen Physiol. 1972 Nov;60(5):519–533. doi: 10.1085/jgp.60.5.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sato M., Austin G., Yai H., Maruhashi J. The ionic permeability changes during acetylcholine-induced responses of Aplysia ganglion cells. J Gen Physiol. 1968 Mar;51(3):321–345. doi: 10.1085/jgp.51.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stinnakre J., Tauc L. Central neuronal response to the activation of osmoreceptors in the osphradium of Aplysia. J Exp Biol. 1969 Nov;51(2):347–361. doi: 10.1242/jeb.51.2.347. [DOI] [PubMed] [Google Scholar]
  35. Stinnakre J., Tauc L., Saito N. Mise en évidence par la photoprotéine aequorine de variations de l'activité du calcium dans des neurones de l'aplysie. J Physiol (Paris) 1972 Oct;65(Suppl):308A–308A. [PubMed] [Google Scholar]
  36. Strumwasser F. The cellular basis of behavior in Aplysia. J Psychiatr Res. 1971 Aug;8(3):237–257. doi: 10.1016/0022-3956(71)90022-7. [DOI] [PubMed] [Google Scholar]
  37. TRAUTWEIN W., KASSEBAUM D. G. On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J Gen Physiol. 1961 Nov;45:317–330. doi: 10.1085/jgp.45.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thomas R. C. Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium. J Physiol. 1969 Apr;201(2):495–514. doi: 10.1113/jphysiol.1969.sp008769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Winegrad S. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J Gen Physiol. 1968 Jan;51(1):65–83. doi: 10.1085/jgp.51.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. den Hertog A., Ritchie J. M. A comparison of the effect of temperature, metabolic inhibitors and of ouabain on the electrogenic componen of the sodium pump in mammalian non-myelinated nerve fibres. J Physiol. 1969 Oct;204(3):523–538. doi: 10.1113/jphysiol.1969.sp008929. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES