Abstract
1. A system is described for simultaneously measuring the respiration and the reflectance of a tissue slice and is applied to a study of guinea-pig cerebral cortical slices.
2. Reducing bathing medium osmolarity led to a reversible decrease in reflectance of these slices (as well as slices from liver and kidney cortex). In half isotonic solutions reflectance was reduced by 31%.
3. Anoxia led to a decreased reflectance which was eliminated if all the Cl was substituted by the larger glucuronate anion.
4. It is concluded that slice reflectance is lowered when cellular volumes are increased by water or isotonic solution influx.
5. Membrane depolarization effected by ouabain, high (60 mM) K bathing medium, veratridine or repeated electrical pulses led to rapid decreases in reflectance of 25, 27, 31 and 7·5% respectively. Turning off the electrical pulses caused reflectance to return to control values. Reversibility of the chemical effectors was not tested.
6. Substitution of Cl by glucuronate abolished the reflectance changes, although it did not inhibit the increased respiration induced by the depolarizing stimuli.
7. Tetrodotoxin abolished both the respiratory and reflectance effects of veratridine and electrical pulses but had no effect upon those of high K or ouabain.
8. The decrease in reflectance began about 1 sec after initiation of the pulses and was half maximal by 8 sec.
9. Titrating reflectance against [K] showed that an increase of 5 mM-K led to a 4% decrease in reflectance and that reflectance became minimal between 60 and 80 mM-K+.
10. It is concluded that membrane depolarization in excitable cells of the cerebral cortex (and also, possibly, in the glia) causes rapid increases in cell volume due to influx of isotonic solution.
11. The results indicate, more specifically, that changes in intercellular K concentrations of size and duration thought to occur following nervous activity in the C.N.S. cause cell volume changes large enough to drastically reduce the intercellular volumes and so, transiently, increase extracellular molecular and ionic concentrations. Increases of extracellular [K] and [Ca] have significant effects upon synaptic transmission and upon spontaneous nervous activity. It is suggested that nervous activity in one cell (or portion of it) might, in this way, strongly influence function in neighbouring elements.
Full text
PDF


















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashford C. A., Dixon K. C. The effect of potassium on the glucolysis of brain tissue with reference to the Pasteur effect. Biochem J. 1935;29(1):157–168. doi: 10.1042/bj0290157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARER R., ROSS K. F. A., TKACZYK S. Refractometry of living cells. Nature. 1953 Apr 25;171(4356):720–724. doi: 10.1038/171720a0. [DOI] [PubMed] [Google Scholar]
- Baylor D. A., Nicholls J. G. After-effects of nerve impulses on signalling in the central nervous system of the leech. J Physiol. 1969 Aug;203(3):571–589. doi: 10.1113/jphysiol.1969.sp008880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Nicholls J. G. Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J Physiol. 1969 Aug;203(3):555–569. doi: 10.1113/jphysiol.1969.sp008879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourke R. S., Tower D. B. Fluid compartmentation and electrolytes of cat cerebral cortex in vitro. II. Sodium, potassium and chloride of mature cerebral cortex. J Neurochem. 1966 Nov;13(11):1099–1117. doi: 10.1111/j.1471-4159.1966.tb04268.x. [DOI] [PubMed] [Google Scholar]
- Bracho H., Orkand R. K. Neuron-glia interaction: dependence on temperature. Brain Res. 1972 Jan 28;36(2):416–419. doi: 10.1016/0006-8993(72)90747-0. [DOI] [PubMed] [Google Scholar]
- CHANCE B., COHEN P., JOBSIS F., SCHOENER B. Intracellular oxidation-reduction states in vivo. Science. 1962 Aug 17;137(3529):499–508. doi: 10.1126/science.137.3529.499. [DOI] [PubMed] [Google Scholar]
- Cohen L. B., Keynes R. D. Changes in light scattering associated with the action potential in crab nerves. J Physiol. 1971 Jan;212(1):259–275. doi: 10.1113/jphysiol.1971.sp009321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis M. J., Gerschenfeld H. M. Some physiological properties of identified mammalian neuroglial cells. J Physiol. 1969 Jul;203(1):211–222. doi: 10.1113/jphysiol.1969.sp008860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELLIOTT K. A., PAPPIUS H. M. Water distribution in incubated slices of brain and other tissues. Can J Biochem Physiol. 1956 Sep;34(5):1007–1022. [PubMed] [Google Scholar]
- FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GERSCHENFELD H. M., WALD F., ZADUNAISKY J. A., DE ROBERTIS E. D. Function of astroglia in the water-ion metabolism of the central nervous system: an electron microscope study. Neurology. 1959 Jun;9(6):412–425. doi: 10.1212/wnl.9.6.412. [DOI] [PubMed] [Google Scholar]
- GIBSON I. M., MCILWAIN H. CONTINUOUS RECORDINGS OF CHANGES IN MEMBRANE POTENTIAL IN MAMMALIAN CEREBRAL TISSUES IN VITRO; RECOVERY AFTER DEPOLARIZATION BY ADDED SUBSTANCES. J Physiol. 1965 Jan;176:261–283. doi: 10.1113/jphysiol.1965.sp007549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
- HEMPLING H. G. Permeability of the Ehrlich ascites tumor cell to water. J Gen Physiol. 1960 Nov;44:365–379. doi: 10.1085/jgp.44.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HILL D. K. The effect of stimulation on the opacity of a crustacean nerve trunk and its relation to fibre diameter. J Physiol. 1950 Oct 16;111(3-4):283–303. doi: 10.1113/jphysiol.1950.sp004480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HILL D. K. The volume change resulting from stimulation of a giant nerve fibre. J Physiol. 1950 Oct 16;111(3-4):304–327. doi: 10.1113/jphysiol.1950.sp004481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEESEY J. C., WALLGREN H., MCILWAIN H. THE SODIUM, POTASSIUM AND CHLORIDE OF CEREBRAL TISSUES: MAINTENANCE, CHANGE ON STIMULATION AND SUBSEQUENT RECOVERY. Biochem J. 1965 May;95:289–300. doi: 10.1042/bj0950289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakiuchi S., Rall T. W., McIlwain H. The effect of electrical stimulation upon the accumulation of adenosine 3',5'-phosphate in isolated cerebral tissue. J Neurochem. 1969 Apr;16(4):485–491. doi: 10.1111/j.1471-4159.1969.tb06847.x. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. Further study of the role of calcium in synaptic transmission. J Physiol. 1970 May;207(3):789–801. doi: 10.1113/jphysiol.1970.sp009095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinzeller A., Nedvídková J., Knotková A. Effect of saline osmolarity on the steady-state level of water and electrolytes in kidney cortex cells. Biochim Biophys Acta. 1967 May 2;135(2):286–299. doi: 10.1016/0005-2736(67)90122-8. [DOI] [PubMed] [Google Scholar]
- Kuffler S. W., Nicholls J. G., Orkand R. K. Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):768–787. doi: 10.1152/jn.1966.29.4.768. [DOI] [PubMed] [Google Scholar]
- LEAF A. On the mechanism of fluid exchange of tissues in vitro. Biochem J. 1956 Feb;62(2):241–248. doi: 10.1042/bj0620241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOLLEY R. N. THE CALCIUM CONTENT OF ISOLATED CEREBRAL TISSUES AND THEIR STEADY-STATE EXCHANGE OF CALCIUM. J Neurochem. 1963 Sep;10:665–676. doi: 10.1111/j.1471-4159.1963.tb08938.x. [DOI] [PubMed] [Google Scholar]
- Lipton P. Effect of changes in osmolarity on sodium transport across isolated toad bladder. Am J Physiol. 1972 Apr;222(4):821–828. doi: 10.1152/ajplegacy.1972.222.4.821. [DOI] [PubMed] [Google Scholar]
- McILWAIN H. Metabolic response in vitro to electrical stimulation of sections of mammalian brain. Biochem J. 1951 Aug;49(3):382–393. doi: 10.1042/bj0490382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto K., Quastel J. H. Tetrodotoxin-sensitive uptake of ions and water byslices of rat brain in vitro. Biochem J. 1970 Nov;120(1):37–47. doi: 10.1042/bj1200037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orkand R. K., Nicholls J. G., Kuffler S. W. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):788–806. doi: 10.1152/jn.1966.29.4.788. [DOI] [PubMed] [Google Scholar]
- PARSONS D. S., VAN ROSSUM G. D. On the determination of the extracellular water compartment in swollen slices of rat liver. Biochim Biophys Acta. 1962 Mar 12;57:495–508. doi: 10.1016/0006-3002(62)91157-5. [DOI] [PubMed] [Google Scholar]
- Pappius H. M. The distribution of water in brain tissues swollen in vitro and in vivo. Prog Brain Res. 1965;15:135–154. doi: 10.1016/s0079-6123(08)60944-9. [DOI] [PubMed] [Google Scholar]
- SCHULTZ R. L., MAYNARD E. A., PEASE D. C. Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum. Am J Anat. 1957 May;100(3):369–407. doi: 10.1002/aja.1001000305. [DOI] [PubMed] [Google Scholar]
- Sattin A., Rall T. W. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol. 1970 Jan;6(1):13–23. [PubMed] [Google Scholar]
- Schanne O., Coraboeuf E. Potential and resistance measurements of rat liver cells in situ. Nature. 1966 Jun 25;210(5043):1390–1391. doi: 10.1038/2101390a0. [DOI] [PubMed] [Google Scholar]
- Shimizu H., Creveling C. R., Daly J. Stimulated formation of adenosine 3',5'-cyclic phosphate in cerebral cortex: synergism between electrical activity and biogenic amines. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1033–1040. doi: 10.1073/pnas.65.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAKEUCHI A., TAKEUCHI N. Changes in potassium concentration around motor nerve terminals, produced by current flow, and their effects on neuromuscular transmission. J Physiol. 1961 Jan;155:46–58. doi: 10.1113/jphysiol.1961.sp006612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trachtenberg M. C., Pollen D. A. Neuroglia: biophysical properties and physiologic function. Science. 1970 Feb 27;167(3922):1248–1252. doi: 10.1126/science.167.3922.1248. [DOI] [PubMed] [Google Scholar]
- Ulbricht W. The effect of veratridine on excitable membranes of nerve and muscle. Ergeb Physiol. 1969;61:18–71. doi: 10.1007/BFb0111446. [DOI] [PubMed] [Google Scholar]
- VAN HARREVELD A. Changes in the diameter of apical dendrites during spreading depression. Am J Physiol. 1958 Mar;192(3):457–463. doi: 10.1152/ajplegacy.1958.192.3.457. [DOI] [PubMed] [Google Scholar]
- VANHARREVELD A., CROWELL J., MALHOTRA S. K. A STUDY OF EXTRACELLULAR SPACE IN CENTRAL NERVOUS TISSUE BY FREEZE-SUBSTITUTION. J Cell Biol. 1965 Apr;25:117–137. doi: 10.1083/jcb.25.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLLENBERGER A. Action of protoveratrine on the metabolism of cerebral cortex. 1. Unstimulated cerebral-cortex tissue. Biochem J. 1955 Sep;61(1):68–77. doi: 10.1042/bj0610068. [DOI] [PMC free article] [PubMed] [Google Scholar]
