Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1973 Dec;235(3):639–654. doi: 10.1113/jphysiol.1973.sp010409

The onset of the effects of zinc and tetraethylammonium ions on action potential duration and twitch amplitude of single muscle fibres

P R Stanfield
PMCID: PMC1350785  PMID: 4543939

Abstract

1. Single dissected muscle fibres were used to examine the rates of onset and reversal of the effects of zinc and tetraethylammonium (TEA) ions on the duration of the action potential and the amplitude of the twitch.

2. The increases in fall time (100-50%) of the action potential and in the amplitude of the twitch resulting from the application of zinc or TEA follow exponential time courses.

3. The time constants for the onset of the effects of 0·1 mM zinc were 11·03±0·71 sec (six fibres) and 9·24±0·77 sec (sixteen fibres) on action potential and twitch amplitude respectively. The values are not significantly different from each other.

4. The onset of the effect of zinc on action potential duration was speeded up by `detubulation' by glycerol treatment. The time constant was 3·88±0·68 sec (six fibres).

5. The time constants for the onset of the effects of 25 mM-TEA were 3·48±0·69 sec (six fibres) and 3·81±0·26 sec (nine fibres) on action potential and twitch respectively. These values are not significantly different from each other.

6. The results are consistent with the idea that zinc and TEA act as twitch potentiators by way of their effect on action potential duration. It seems likely that this effect is, in part at least, on the surface membrane, but an effect within the T-system is not ruled out.

Full text

PDF
639

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG C. M., BINSTOCK L. ANOMALOUS RECTIFICATION IN THE SQUID GIANT AXON INJECTED WITH TETRAETHYLAMMONIUM CHLORIDE. J Gen Physiol. 1965 May;48:859–872. doi: 10.1085/jgp.48.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian R. H., Chandler W. K., Hodgkin A. L. The kinetics of mechanical activation in frog muscle. J Physiol. 1969 Sep;204(1):207–230. doi: 10.1113/jphysiol.1969.sp008909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adrian R. H., Chandler W. K., Hodgkin A. L. Voltage clamp experiments in striated muscle fibres. J Physiol. 1970 Jul;208(3):607–644. doi: 10.1113/jphysiol.1970.sp009139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Adrian R. H., Costantin L. L., Peachey L. D. Radial spread of contraction in frog muscle fibres. J Physiol. 1969 Sep;204(1):231–257. doi: 10.1113/jphysiol.1969.sp008910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ashley C. C., Ridgway E. B. On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres. J Physiol. 1970 Jul;209(1):105–130. doi: 10.1113/jphysiol.1970.sp009158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bezanilla F., Caputo C., Gonzalez-Serratos H., Venosa R. A. Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog. J Physiol. 1972 Jun;223(2):507–523. doi: 10.1113/jphysiol.1972.sp009860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CALDWELL P. C., WALSTER G. STUDIES ON THE MICRO-INJECTION OF VARIOUS SUBSTANCES INTO CRAB MUSCLE FIBRES. J Physiol. 1963 Nov;169:353–372. doi: 10.1113/jphysiol.1963.sp007261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Costantin L. L. The role of sodium current in the radial spread of contraction in frog muscle fibers. J Gen Physiol. 1970 Jun;55(6):703–715. doi: 10.1085/jgp.55.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eisenberg B., Eisenberg R. S. Selective disruption of the sarcotubular system in frog sartorius muscle. A quantitative study with exogenous peroxidase as a marker. J Cell Biol. 1968 Nov;39(2):451–467. doi: 10.1083/jcb.39.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FRANK G. B. Utilization of bound calcium in the action of caffeine and certain multivalent cations on skeletal muscle. J Physiol. 1962 Sep;163:254–268. doi: 10.1113/jphysiol.1962.sp006972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FREYGANG W. H., Jr, GOLDSTEIN D. A., HELLAM D. C. THE AFTER-POTENTIAL THAT FOLLOWS TRAINS OF IMPULSES IN FROG MUSCLE FIBERS. J Gen Physiol. 1964 May;47:929–952. doi: 10.1085/jgp.47.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. González-Serratos H. Inward spread of activation in vertebrate muscle fibres. J Physiol. 1971 Feb;212(3):777–799. doi: 10.1113/jphysiol.1971.sp009356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HODGKIN A. L., HOROWICZ P. The effect of nitrate and other anions on the mechanical response of single muscle fibres. J Physiol. 1960 Sep;153:404–412. doi: 10.1113/jphysiol.1960.sp006542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HODGKIN A. L., HOROWICZ P. The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J Physiol. 1960 Sep;153:370–385. doi: 10.1113/jphysiol.1960.sp006540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hutter O. F. Potassium conductance of skeletal muscle treated with formaldehyde. Nature. 1969 Dec 20;224(5225):1215–1217. doi: 10.1038/2241215a0. [DOI] [PubMed] [Google Scholar]
  18. ISAACSON A., SANDOW A. Effects of zinc on responses of skeletal muscle. J Gen Physiol. 1963 Mar;46:655–677. doi: 10.1085/jgp.46.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ildefonse M., Pager J., Rougier O. Analyse des propriétés de rectification de la fibre musculaire squelettique rapide après traitement au glycérol. C R Acad Sci Hebd Seances Acad Sci D. 1969 Jun 3;268(23):2783–2786. [PubMed] [Google Scholar]
  20. Ildefonse M., Rougier O. Effet de l'ion tétraéthylammonium sur les coutants de cinétique lente de la fibre musculaire squelettique rapide. J Physiol (Paris) 1971;63(6):237A–237A. [PubMed] [Google Scholar]
  21. Kao C. Y., Stanfield P. R. Actions of some cations on the electrical properties and mechanical threshold of frog sartorius muscle fibers. J Gen Physiol. 1970 May;55(5):620–639. doi: 10.1085/jgp.55.5.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MASHIMA H., WASHIO H. THE EFFECT OF ZINC ON THE ELECTRICAL PROPERTIES OF MEMBRANE AND THE TWITCH TENSION IN FROG MUSCLE FIBRES. Jpn J Physiol. 1964 Oct 15;14:538–550. doi: 10.2170/jjphysiol.14.538. [DOI] [PubMed] [Google Scholar]
  23. Rapoport S. I. A fixed charge model of the transverse tubular system of frog sartorius. J Gen Physiol. 1969 Aug;54(2):178–187. doi: 10.1085/jgp.54.2.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sandow A., Isaacson A. Topochemical factors in potentiation of contraction by heavy metal cations. J Gen Physiol. 1966 May;49(5):937–961. doi: 10.1085/jgp.49.5.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sandow A., Taylor S. R., Preiser H. Role of the action potential in excitation-contraction coupling. Fed Proc. 1965 Sep-Oct;24(5):1116–1123. [PubMed] [Google Scholar]
  26. Stanfield P. R. The differential effects of tetraethylammonium and zinc ions on the resting conductance of frog skeletal muscle. J Physiol. 1970 Jul;209(1):231–256. doi: 10.1113/jphysiol.1970.sp009164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Taylor S. R., Preiser H., Sandow A. Action potential parameters affecting excitation-contraction coupling. J Gen Physiol. 1972 Apr;59(4):421–436. doi: 10.1085/jgp.59.4.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Washio H. The effect of glycerol treatment of voltage-clamped snake muscle fibers. J Gen Physiol. 1973 Feb;61(2):176–184. doi: 10.1085/jgp.61.2.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zachar J., Zacharova D., Adrian R. H. Observations on "detubulated" muscle fibres. Nat New Biol. 1972 Oct 4;239(92):153–155. doi: 10.1038/newbio239153a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES