Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1974 Jan;236(2):483–498. doi: 10.1113/jphysiol.1974.sp010448

The effect of lowering the 5-hydroxytryptamine content of the rat spinal cord on analgesia produced by morphine

Marthe Vogt
PMCID: PMC1350815  PMID: 16992448

Abstract

1. Injection of 5,6-dihydroxytryptamine (5,6-DHT, 50 μg) into a lateral cerebral ventricle of male rats lowered the 5-hydroxytryptamine (5-HT) content of the lumbar cord to 12·8% and reduced the analgesic effect of low doses of morphine (0·64-1·63 mg/kg), tested by exerting pressure on the foot; after doses of morphine of 1·33-1·63 mg/kg, the analgesic response was reduced or abolished in 33% of the rats, and after 0·64 mg/kg, 58% of the animals failed to respond normally.

2. Two days after an I.P. injection of p-chlorophenylalanine (pCPA, 320 mg/kg), the loss of analgesic potency of morphine was more pronounced than after intraventricular 5,6-HDT. The 5-HT content was lowered to about 8% in the lumbar cord, and to 20% or less in pons and medulla.

3. The experiments show that interference with the descending tryptaminergic axons innervating the cord is by itself sufficient to reduce analgesia due to morphine, but they do not exclude the possibility that other tryptaminergic neurones take part in the effect of pCPA. The contribution to the analgesic effect of morphine made by the interaction of tryptaminergic axons with the interneurones `gating' the afferent impulses in the posterior columns is discussed.

Full text

PDF
483

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahtee L., Käriäinen I. The effect of narcotic analgesics on the homovanillic acid content of rat nucleus caudatus. Eur J Pharmacol. 1973 May;22(2):206–208. doi: 10.1016/0014-2999(73)90014-9. [DOI] [PubMed] [Google Scholar]
  2. Ahtee L., Sharman D. F., Vogt M. Acid metabolites of monoamines in avian brain; effects of probenecid and reserpine. Br J Pharmacol. 1970 Jan;38(1):72–85. doi: 10.1111/j.1476-5381.1970.tb10337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akil H., Mayer D. J., Liebeskind J. C. Comparison chez le rat entre l'analgésie induite par stimulation de la substance grise péri-aqueducale et l'analgésie morphinique. C R Acad Sci Hebd Seances Acad Sci D. 1972 Jun 26;274(26):3603–3605. [PubMed] [Google Scholar]
  4. Andén N. E. Distribution of monoamines and dihydroxyphenylalanine decarboxylase activity in the spinal cord. Acta Physiol Scand. 1965 Jul;64(3):197–203. doi: 10.1111/j.1748-1716.1965.tb04168.x. [DOI] [PubMed] [Google Scholar]
  5. Baumgarten H. G., Evetts K. D., Holman R. B., Iversen L. L., Vogt M., Wilson G. Effects of 5,6-dihydroxytryptamine on monoaminergic neurones in the central nervous system of the rat. J Neurochem. 1972 Jun;19(6):1587–1597. doi: 10.1111/j.1471-4159.1972.tb05102.x. [DOI] [PubMed] [Google Scholar]
  6. Baumgarten H. G., Lachenmayer L., Schlossberger H. G. Evidence for a degeneration of indoleamine containing nerve terminals in rat brain, induced by 5,6-dihydroxytryptamine. Z Zellforsch Mikrosk Anat. 1972;125(4):553–569. doi: 10.1007/BF00306659. [DOI] [PubMed] [Google Scholar]
  7. Björklund A., Nobin A., Stenevi U. Regeneration of central serotonin neurons after axonal degeneration induced by 5,6-dihydroxytryptamine. Brain Res. 1973 Feb 14;50(1):214–220. doi: 10.1016/0006-8993(73)90611-2. [DOI] [PubMed] [Google Scholar]
  8. Bläsig J., Reinhold K., Herz A. Effect of 6-hydroxydopamine, 5,6-dihydroxytryptamine and raphe lesions on the antinociceptive actions of morphine in rats. Psychopharmacologia. 1973 Jul 17;31(2):111–119. doi: 10.1007/BF00419811. [DOI] [PubMed] [Google Scholar]
  9. Brown A. G. Effects of descending impulses on transmission through the spinocervical tract. J Physiol. 1971 Dec;219(1):103–125. doi: 10.1113/jphysiol.1971.sp009652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Colasanti B., Khazan N. Antagonism of the acute electroencephalographic and behavioral effects of morphine in the rat by depletion of brain biogenic amines. Neuropharmacology. 1973 May;12(5):463–469. doi: 10.1016/0028-3908(73)90062-2. [DOI] [PubMed] [Google Scholar]
  11. Da Prada M., Carruba M., O'Brien R. A., Saner A., Pletscher A. The effect of 5,6-dihydroxytryptamine on sexual behaviour of male rats. Eur J Pharmacol. 1972 Aug;19(2):288–290. doi: 10.1016/0014-2999(72)90023-4. [DOI] [PubMed] [Google Scholar]
  12. Daly J., Fuxe K., Jonsson G. Effects of intracerebral injections of 5,6-dihydroxytryptamine on central monoamine neurons: evidence for selective degeneration of central 5-hydroxytryptamine neurons. Brain Res. 1973 Jan 30;49(2):476–482. doi: 10.1016/0006-8993(73)90446-0. [DOI] [PubMed] [Google Scholar]
  13. Gauchy C., Agid Y., Glowinski J., Cheramy A. Acute effects of morphine on dopamine synthesis and release and tyrosine metabolism in the rat striatum. Eur J Pharmacol. 1973 Jun;22(3):311–319. doi: 10.1016/0014-2999(73)90031-9. [DOI] [PubMed] [Google Scholar]
  14. Görlitz B. D., Frey H. H. Central monoamines and antinociceptive drug action. Eur J Pharmacol. 1972 Nov;20(2):171–180. doi: 10.1016/0014-2999(72)90146-x. [DOI] [PubMed] [Google Scholar]
  15. HAGBARTH K. E., KERR D. I. Central influences on spinal afferent conduction. J Neurophysiol. 1954 May;17(3):295–307. doi: 10.1152/jn.1954.17.3.295. [DOI] [PubMed] [Google Scholar]
  16. Ho I. K., Loh H. H., Way E. L. Influence of 5,6-dihydroxytryptamine on morphine tolerance and physical dependence. Eur J Pharmacol. 1973 Mar;21(3):331–336. doi: 10.1016/0014-2999(73)90135-0. [DOI] [PubMed] [Google Scholar]
  17. Ho I. K., Lu S. E., Stolman S., Loh H. H., Way E. L. Influence of p-chlorophenylalanine on morphine tolerance and physical dependence and regional brain serotonin turnover studies in morphine tolerant-dependent mice. J Pharmacol Exp Ther. 1972 Jul;182(1):155–165. [PubMed] [Google Scholar]
  18. Héry F., Rouer E., Glowinski J. Daily variations of serotonin metabolism in the rat brain. Brain Res. 1972 Aug 25;43(2):445–465. doi: 10.1016/0006-8993(72)90400-3. [DOI] [PubMed] [Google Scholar]
  19. Jéquier E., Lovenberg W., Sjoerdsma A. Tryptophan hydroxylase inhibition: the mechanism by which p-chlorophenylalanine depletes rat brain serotonin. Mol Pharmacol. 1967 May;3(3):274–278. [PubMed] [Google Scholar]
  20. Koe B. K., Weissman A. p-Chlorophenylalanine: a specific depletor of brain serotonin. J Pharmacol Exp Ther. 1966 Dec;154(3):499–516. [PubMed] [Google Scholar]
  21. LAVERTY R., SHARMAN D. F. MODIFICATION BY DRUGS OF THE METABOLISM OF 3,4-DIHYDROXYPHENYLETHYLAMINE, NORADRENALINE AND 5-HYDROXYTRYPTAMINE IN THE BRAIN. Br J Pharmacol Chemother. 1965 Jun;24:759–772. doi: 10.1111/j.1476-5381.1965.tb01632.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee J. R., Fennessy M. R. The relationship between morphine analgesia and the levels of biogenic amines in the mouse brain. Eur J Pharmacol. 1970 Sep 1;12(1):65–70. doi: 10.1016/0014-2999(70)90029-4. [DOI] [PubMed] [Google Scholar]
  23. Liebeskind J. C., Guilbaud G., Besson J. M., Oliveras J. L. Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: behavioral observations and inhibitory effects on spinal cord interneurons. Brain Res. 1973 Feb 28;50(2):441–446. doi: 10.1016/0006-8993(73)90748-8. [DOI] [PubMed] [Google Scholar]
  24. Lutsch E. F., Morris R. W. Light reversal of a morphine-induced analgesia susceptibility rhythm in mice. Experientia. 1971 Apr 15;27(4):420–421. doi: 10.1007/BF02137286. [DOI] [PubMed] [Google Scholar]
  25. Nobin A., Baumgarten H. G., Björklund A., Lachenmayer L., Stenevi U. Axonal degeneration and regeneration of bulbo-spinal indolamine neurons after 5,6-dihydroxytryptamine treatment. Brain Res. 1973 Jun 29;56:1–24. doi: 10.1016/0006-8993(73)90324-7. [DOI] [PubMed] [Google Scholar]
  26. PATON W. D. The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Br J Pharmacol Chemother. 1957 Mar;12(1):119–127. doi: 10.1111/j.1476-5381.1957.tb01373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Quay W. B. Differences in circadian rhythms in 5-hydroxytryptamine according to brain region. Am J Physiol. 1968 Dec;215(6):1448–1453. doi: 10.1152/ajplegacy.1968.215.6.1448. [DOI] [PubMed] [Google Scholar]
  28. RANDALL L. O., SELITTO J. J. A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther. 1957 Sep 1;111(4):409–419. [PubMed] [Google Scholar]
  29. REXED B. The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol. 1952 Jun;96(3):414–495. doi: 10.1002/cne.900960303. [DOI] [PubMed] [Google Scholar]
  30. Reynolds D. V. Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science. 1969 Apr 25;164(3878):444–445. doi: 10.1126/science.164.3878.444. [DOI] [PubMed] [Google Scholar]
  31. SIGG E. B., CAPRIO G., SCHNEIDER J. A. Synergism of amines and antagonism of reserpine to morphine analgesia. Proc Soc Exp Biol Med. 1958 Jan;97(1):97–100. doi: 10.3181/00379727-97-23656. [DOI] [PubMed] [Google Scholar]
  32. Samanin R., Gumulka W., Valzelli L. Reduced effect of morphine in midbrain raphe lesioned rats. Eur J Pharmacol. 1970;10(3):339–343. doi: 10.1016/0014-2999(70)90205-0. [DOI] [PubMed] [Google Scholar]
  33. Scheving L. E., Harrison W. H., Gordon P., Pauly J. E. Daily fluctuation (circadian and ultradian) in biogenic amines of the rat brain. Am J Physiol. 1968 Jan;214(1):166–173. doi: 10.1152/ajplegacy.1968.214.1.166. [DOI] [PubMed] [Google Scholar]
  34. Shillito E. E. The effect of parachlorophenylalanine on social interaction of male rats. Br J Pharmacol. 1970 Feb;38(2):305–315. doi: 10.1111/j.1476-5381.1970.tb08518.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. TAKAGI H., MATSURMURA M., YANAI A., OGIU K. The effect of analgesics on the spinal reflex activity of the cat. Jpn J Pharmacol. 1955 Mar;4(2):176–187. doi: 10.1254/jjp.4.176. [DOI] [PubMed] [Google Scholar]
  36. TAKAGI H., TAKASHIMA T., KIMURA K. ANTAGONISM OF THE ANALGETIC EFFECT OF MORPHINE IN MICE BY TETRABENAZINE AND RESERPINE. Arch Int Pharmacodyn Ther. 1964 Jun 1;149:484–492. [PubMed] [Google Scholar]
  37. TAUB A. LOCAL, SEGMENTAL AND SUPRASPINAL INTERACTION WITH A DORSOLATERAL SPINAL CUTANEOUS AFFERENT SYSTEM. Exp Neurol. 1964 Oct;10:357–374. doi: 10.1016/0014-4886(64)90006-8. [DOI] [PubMed] [Google Scholar]
  38. Tenen S. S. Antagonism of the analgesic effect of morphine and other drugs by p-chlorophenylalanine, a serotonin depletor. Psychopharmacologia. 1968;12(4):278–285. doi: 10.1007/BF00401407. [DOI] [PubMed] [Google Scholar]
  39. Vigouret J., Teschemacher H., Albus K., Herz A. Differentiation between spinal and supraspinal sites of action of morphine when inhibiting the hindleg flexor reflex in rabbits. Neuropharmacology. 1973 Feb;12(2):111–121. doi: 10.1016/0028-3908(73)90081-6. [DOI] [PubMed] [Google Scholar]
  40. Vogt M., Wilson G. Concentration of 5-hydroxytryptamine and its acid metabolite in ventricle-near regions of the rat brain. J Neurochem. 1972 Jun;19(6):1599–1600. doi: 10.1111/j.1471-4159.1972.tb05103.x. [DOI] [PubMed] [Google Scholar]
  41. Volicer L. Correlation between behavioral and biochemical effects of p-chlorophenylalanine in mice and rats. Int J Neuropharmacol. 1969 Jul;8(4):361–364. doi: 10.1016/0028-3908(69)90022-7. [DOI] [PubMed] [Google Scholar]
  42. Wall P. D. The laminar organization of dorsal horn and effects of descending impulses. J Physiol. 1967 Feb;188(3):403–423. doi: 10.1113/jphysiol.1967.sp008146. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES