Abstract
1. The relationship between the [Ca]o, the [Na]o and the strength of the contracture evoked when the [Na]o is reduced has been investigated in isolated frog atrial trabeculae.
2. The strength of the contracture varies by the [Ca]o2 and by 4√([Na]o) over the lower tension range.
3. The contracture induced by reduction of [Na]o is not sustained, but relaxes spontaneously. The rate of this relaxation is only dependent on the [Na]o is the presence of strophanthidin.
4. After the spontaneous relaxation of an Na-free contracture, the ability of the trabecula to develop tension upon a second challenge with Na-free solution returns in about 3 min if the muscle is perfused with Na-containing fluid. This recovery process is slowed if the [Na]o is low during the recovery period, but the recovery is hastened by electrical stimulation of the preparation or by perfusion with K-free or strophanthidin containing sodium-Ringer.
5. It is suggested that the influx of Ca2+ which induces the Na-free contracture depends on the presence of Na+ inside the cells. When the intracellular Na concentration falls, the Ca influx falls, and the muscle relaxes as a result of the activity of an intracellular relaxing structure.
Full text
PDF![295](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/b41c5ce60089/jphysiol00938-0056.png)
![296](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/1243616dbc04/jphysiol00938-0057.png)
![297](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/4b8b6fdb01bb/jphysiol00938-0058.png)
![298](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/fcbe3cd9b6e6/jphysiol00938-0059.png)
![299](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/185313bc5e71/jphysiol00938-0060.png)
![300](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/b9f75758ee18/jphysiol00938-0061.png)
![301](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/1c5bbc3985ab/jphysiol00938-0062.png)
![302](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/1edd8d01fed0/jphysiol00938-0063.png)
![303](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/a1739948972a/jphysiol00938-0064.png)
![304](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/9bf908361197/jphysiol00938-0065.png)
![305](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/8a2ffb7d8744/jphysiol00938-0066.png)
![306](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/54a07e5da60f/jphysiol00938-0067.png)
![307](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/d2dab2ce5fd5/jphysiol00938-0068.png)
![308](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/fddb0fb733c2/jphysiol00938-0069.png)
![309](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/d7055a9a59a3/jphysiol00938-0070.png)
![310](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/0a6a88c5db23/jphysiol00938-0071.png)
![311](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/ca93e2817b24/jphysiol00938-0072.png)
![312](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/89684e91dd15/jphysiol00938-0073.png)
![313](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8838/1350885/c3e50c131f76/jphysiol00938-0074.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beeler G. W., Jr, Reuter H. The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):211–229. doi: 10.1113/jphysiol.1970.sp009057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birks R. I., Cohen M. W. The influence of internal sodium on the behaviour of motor nerve endings. Proc R Soc Lond B Biol Sci. 1968 Jul 9;170(1021):401–421. doi: 10.1098/rspb.1968.0047. [DOI] [PubMed] [Google Scholar]
- Busselen P., Carmeliet E. Protagonistic effects of Na and Ca on tension development in cardiac muscle at low extracellular Na concentrations. Nat New Biol. 1973 May 9;243(123):57–59. [PubMed] [Google Scholar]
- Chapman R. A., Ellis D. Synergistic effects of cooling and caffeine on the contraction of the frog's heart. J Physiol. 1973 Jul;232(2):101P–102P. [PubMed] [Google Scholar]
- Chapman R. A. Experimental alteration of the relationship between the external calcium concentration and the contractile force generated by auricular trabeculae isolated from the heart of the frog, Rana pipiens. J Physiol. 1971 Oct;218(1):147–161. doi: 10.1113/jphysiol.1971.sp009608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A., Miller D. J. Caffeine contractures induced in frog auricular trabeculae in the absence of external calcium. J Physiol. 1972 Sep;225(2):52P–54P. [PubMed] [Google Scholar]
- Chapman R. A., Niedergerke R. Effects of calcium on the contraction of the hypodynamic frog heart. J Physiol. 1970 Dec;211(2):389–421. doi: 10.1113/jphysiol.1970.sp009284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A., Niedergerke R. Interaction between heart rate and calcium concentration in the control of contractile strength of the frog heart. J Physiol. 1970 Dec;211(2):423–443. doi: 10.1113/jphysiol.1970.sp009285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A., Ochi R. The effects of manganese ions on the contractile responses of isolated frog atrial trabeculae. J Physiol. 1972 Apr;222(1):56P–58P. [PubMed] [Google Scholar]
- Chapman R. A. The onic dependence of the strength and spontaneous relations of the potassium contracture induced in the heart of the frog Rana pipiens. J Physiol. 1973 Jun;231(2):209–232. doi: 10.1113/jphysiol.1973.sp010229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A., Tunstall J. The dependence of the contractile force generated by frog auricular trabeculae upon the external calcium concentration. J Physiol. 1971 May;215(1):139–162. doi: 10.1113/jphysiol.1971.sp009462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daly I. de B., Clark A. J. The action of ions upon the frog's heart. J Physiol. 1921 Mar 15;54(5-6):367–383. doi: 10.1113/jphysiol.1921.sp001938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delahayes J. F., Bozler E. Effects of drugs and stimulation on 45 Ca movements in frog ventricle. Proc Soc Exp Biol Med. 1972 Nov;141(2):423–430. doi: 10.3181/00379727-141-36790. [DOI] [PubMed] [Google Scholar]
- Gadsby D. C., Niedergerke R., Page S. Do intracellular concentrations of potassium or sodium regulate the strength of the heart beat? Nature. 1971 Aug 27;232(5313):651–653. doi: 10.1038/232651a0. [DOI] [PubMed] [Google Scholar]
- Goto M., Kimoto Y., Suetsugu Y. Membrane currents responsibile for contraction and relaxation of the bullfrog ventricle. Jpn J Physiol. 1972 Jun;22(3):315–331. doi: 10.2170/jjphysiol.22.315. [DOI] [PubMed] [Google Scholar]
- Graham J. A., Lamb J. F. The effect of adrenaline on the tension developed in contractures and twitches of the ventricle of the frog. J Physiol. 1968 Jul;197(2):479–509. doi: 10.1113/jphysiol.1968.sp008571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keenan M. J., Niedergerke R. Intracellular sodium concentration and resting sodium fluxes of the frog heart ventricle. J Physiol. 1967 Jan;188(2):235–260. doi: 10.1113/jphysiol.1967.sp008136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUTTGAU H. C., NIEDERGERKE R. The antagonism between Ca and Na ions on the frog's heart. J Physiol. 1958 Oct 31;143(3):486–505. doi: 10.1113/jphysiol.1958.sp006073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langer G. A. Heart: excitation-contraction coupling. Annu Rev Physiol. 1973;35:55–86. doi: 10.1146/annurev.ph.35.030173.000415. [DOI] [PubMed] [Google Scholar]
- NIEDERGERKE R. MOVEMENTS OF CA IN FROG HEART VENTRICLES AT REST AND DURING CONTRACTURES. J Physiol. 1963 Jul;167:515–550. doi: 10.1113/jphysiol.1963.sp007166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OTSUKA M., NONOMURA Y. The influence of ouabain on the relation between membrane potential and tension in frog heart muscle. J Pharmacol Exp Ther. 1963 Jul;141:1–5. [PubMed] [Google Scholar]
- Palmer R. F., Posey V. A. Ion effects on calcium accumulation by cardiac sarcoplasmic reticulum. J Gen Physiol. 1967 Sep;50(8):2085–2095. doi: 10.1085/jgp.50.8.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vassort G. Influence of sodium ions on the regulation of frog myocardial contractility. Pflugers Arch. 1973 Mar 30;339(3):224–240. doi: 10.1007/BF00587374. [DOI] [PubMed] [Google Scholar]
- WILBRANDT W., KOLLER H. Die Calciumwirkung am Froschherzen als Funktion des Ionengleichgewichts zwischen Zellmembran und Umgebung. Helv Physiol Pharmacol Acta. 1948;6(2):208–221. [PubMed] [Google Scholar]