Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1969 Aug;203(2):261–280. doi: 10.1113/jphysiol.1969.sp008863

The responses of cortical neurones to monoamines under differing anaesthetic conditions

E S Johnson, M H T Roberts, D W Straughan
PMCID: PMC1351444  PMID: 5796464

Abstract

1. Noradrenaline, isoprenaline, 5-hydroxytryptamine and acetylcholine have been applied into the environment of single neurones in the cat cerebral cortex by micro-iontophoresis. The influence of anaesthesia on the neuronal responses to these drugs was studied.

2. In general, excitation of neurones by noradrenaline occurred commonly in both unanaesthetized encéphale isolé (48%) and N2O-halothane anaesthetized preparations (57%) while depressions were less frequent (24 and 20% respectively). The picture differed markedly in barbiturate anaesthetized animals where excitation was uncommon (12%) and the majority of cells (59%) was depressed by noradrenaline. Although fewer cells were studied, similar differences were obtained with isoprenaline and 5-hydroxytryptamine for the three types of preparation. In sharp contrast, the vast majority of cells was excited by acetylcholine in each of the preparations: encéphale isolé 84%; N2O-halothane 92%; barbiturate anaesthetized preparations 85%.

3. The differing neuronal responses observed in these experimental situations were not the result of variations in the depth of anaesthesia.

4. Although the depths at which neurones were encountered within the cortex did not differ in N2O-halothane and encéphale isolé preparations, significantly more cells were found in deeper layers of cortex in barbiturate preparations. The proportion of cells excited or depressed by noradrenaline was generally similar at each depth in the three preparations used.

5. The distribution of rates of cell firing was strikingly similar in each preparation, and most of the cells studied had frequencies below 10/sec.

6. The direction in which a cell responds to noradrenaline is mainly determined by the type of anaesthetic used, and not by the depth of anaesthesia, the rate of cell firing, or cell depth within the cortex. This suggests important differences in the central pharmacology of halothane and barbiturates.

Full text

PDF
261

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLOOM F. E., COSTA E., SALMOIRAGHI G. C. ANALYSIS OF INDIVIDUAL RABBIT OLFACTORY BULB NEURON RESPONSES TO THE MICROELECTROPHORESIS OF ACETYLCHOLINE, NOREPINEPHRINE AND SEROTONIN SYNERGISTS AND ANTAGONISTS. J Pharmacol Exp Ther. 1964 Oct;146:16–23. [PubMed] [Google Scholar]
  2. BRADLEY P. B., ELKES J. The effects of some drugs on the electrical activity of the brain. Brain. 1957 Mar;80(1):77–117. doi: 10.1093/brain/80.1.77. [DOI] [PubMed] [Google Scholar]
  3. Bloom F. E., Costa E., Salmoiraghi G. C. Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis. J Pharmacol Exp Ther. 1965 Nov;150(2):244–252. [PubMed] [Google Scholar]
  4. Bloxam D. L. Effects of halothane, trichloroethylene, pentobarbitone and thiopentone on amino acid transport in the perfused rat liver. Biochem Pharmacol. 1967 Sep 9;16(9):1848–1852. doi: 10.1016/0006-2952(67)90263-8. [DOI] [PubMed] [Google Scholar]
  5. Crawford J. M., Curtis D. R. Pharmacological studies on feline Betz cells. J Physiol. 1966 Sep;186(1):121–138. doi: 10.1113/jphysiol.1966.sp008024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DOMINO E. F., UEKI S. Differential effects of general anesthetics on spontaneous electrical activity of neocortical and rhinencephalic brain systems of the dog. J Pharmacol Exp Ther. 1959 Dec;127:288–304. [PubMed] [Google Scholar]
  7. Diamond J., Huxley A. F. The activation and distribution of GABA and L-glutamate receptors on goldfish Mauthner neurones: an analysis of dendritic remote inhibition. J Physiol. 1968 Feb;194(3):669–723. doi: 10.1113/jphysiol.1968.sp008432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engberg I., Ryall R. W. The inhibitory action of noradrenaline and other monoamines on spinal neurones. J Physiol. 1966 Jul;185(2):298–322. doi: 10.1113/jphysiol.1966.sp007988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson E. S., Roberts M. H., Sobieszek A., Straughan D. W. Excitation of cortical neurones by noradrenaline. Br J Pharmacol. 1968 Sep;34(1):221P–222P. [PMC free article] [PubMed] [Google Scholar]
  10. Johnson E. S., Roberts M. H., Straughan D. W. Adrenergic responses in the cerebral cortex. J Physiol. 1969 Mar;201(1):21P–22P. [PubMed] [Google Scholar]
  11. KRNJEVIC K., PHILLIS J. W. Acetylcholine-sensitive cells in the cerebral cortex. J Physiol. 1963 Apr;166:296–327. doi: 10.1113/jphysiol.1963.sp007106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KRNJEVIC K., PHILLIS J. W. Actions of certain amines on cerebral cortical neurones. Br J Pharmacol Chemother. 1963 Jun;20:471–490. doi: 10.1111/j.1476-5381.1963.tb01484.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KRNJEVIC K., PHILLIS J. W. Iontophoretic studies of neurones in the mammalian cerebral cortex. J Physiol. 1963 Feb;165:274–304. doi: 10.1113/jphysiol.1963.sp007057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kitahata L. M. The effects of halothane and methoxyflurane on recovery cycles of click-evoked potentials from the auditory cortex of the cat. Anesthesiology. 1968 May-Jun;29(3):523–532. doi: 10.1097/00000542-196805000-00028. [DOI] [PubMed] [Google Scholar]
  15. Lajtha A., Toth J. The effects of drugs on uptake and exit of cerebral amino acids. Biochem Pharmacol. 1965 May;14(5):729–738. doi: 10.1016/0006-2952(65)90090-0. [DOI] [PubMed] [Google Scholar]
  16. Legge K. F., Randic M., Straughan D. W. The pharmacology of neurones in the pyriform cortex. Br J Pharmacol Chemother. 1966 Jan;26(1):87–107. doi: 10.1111/j.1476-5381.1966.tb01814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MOUNTCASTLE V. B., DAVIES P. W., BERMAN A. L. Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli. J Neurophysiol. 1957 Jul;20(4):374–407. doi: 10.1152/jn.1957.20.4.374. [DOI] [PubMed] [Google Scholar]
  18. McDowall D. G., Harper A. M. Blood flow and oxygen uptake of the cerebral cortex of the dog during anaesthesia with different volatile agents. Acta Neurol Scand Suppl. 1965;14:146–151. doi: 10.1111/j.1600-0404.1965.tb01974.x. [DOI] [PubMed] [Google Scholar]
  19. PRADHAN S. N., GALAMBOS R. Some effects of anesthetics on the evoked responses in the auditory cortex of cats. J Pharmacol Exp Ther. 1963 Jan;139:97–106. [PubMed] [Google Scholar]
  20. Phillis J. W., Tebecis A. K. The responses of thalamic neurons to iontophoretically applied monoamines. J Physiol. 1967 Oct;192(3):715–745. doi: 10.1113/jphysiol.1967.sp008327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Phillis J. W., Tebecis A. K., York D. H. Histamine and some antihistamines: their actions on cerebral cortical neurones. Br J Pharmacol Chemother. 1968 Jul;33(3):426–440. doi: 10.1111/j.1476-5381.1968.tb00492.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Phillis J. W., Tebècis A. K. The effects of pentobarbitone sodium on acetylcholine excitation and noradrenaline inhibition of thalamic neurons. Life Sci. 1967 Aug 1;6(15):1621–1625. doi: 10.1016/0024-3205(67)90172-5. [DOI] [PubMed] [Google Scholar]
  23. Phillis J. W., York D. H. Cholinergic inhibition in the cerebral cortex. Brain Res. 1967 Aug;5(4):517–520. doi: 10.1016/0006-8993(67)90025-x. [DOI] [PubMed] [Google Scholar]
  24. RANDIC M., SIMINOFF R., STRAUGHAN D. W. ACETYLCHOLINE DEPRESSION OF CORTICAL NEURONS. Exp Neurol. 1964 Mar;9:236–242. doi: 10.1016/0014-4886(64)90020-2. [DOI] [PubMed] [Google Scholar]
  25. Roberts M. H., Straughan D. W. Actions of noradrenaline and mescaline on cortical neurons. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1968;259(2):191–192. doi: 10.1007/BF00537781. [DOI] [PubMed] [Google Scholar]
  26. Roberts M. H., Straughan D. W. Excitation and depression of cortical neurones by 5-hydroxytryptamine. J Physiol. 1967 Nov;193(2):269–294. doi: 10.1113/jphysiol.1967.sp008357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Salmoiraghi G. C. Central adrenergic synapses. Pharmacol Rev. 1966 Mar;18(1):717–726. [PubMed] [Google Scholar]
  28. Salmoiraghi G. C., Stefanis C. N. A critique of iontophoretic studies of central nervous system neurons. Int Rev Neurobiol. 1967;10:1–30. doi: 10.1016/s0074-7742(08)60149-x. [DOI] [PubMed] [Google Scholar]
  29. Schmahl F. W. Effects of anesthetics on regional cerebral blood flow and the regional content of some metabolites of the brain cortex of the cat. Acta Neurol Scand Suppl. 1965;14:156–159. doi: 10.1111/j.1600-0404.1965.tb01976.x. [DOI] [PubMed] [Google Scholar]
  30. WECHSLER R. L., DRIPPS R. D., KETY S. S. Blood flow and oxygen consumption of the human brain during anesthesia produced by thiopental. Anesthesiology. 1951 May;12(3):308–314. doi: 10.1097/00000542-195105000-00006. [DOI] [PubMed] [Google Scholar]
  31. Weight F. F., Salmoiraghi G. C. Responses of spinal cord interneurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis. J Pharmacol Exp Ther. 1966 Sep;153(3):420–427. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES