Abstract
1. The kinetics of mechanical activation were examined in muscle fibres of the frog's sartorius muscle, using a voltage clamp to control membrane potential, tetrodotoxin to eliminate electrical activity and microscopic observations to determine the mechanical threshold.
2. The strength—duration curve was determined over a range of membrane potentials varying between -52 mV (rheobase) and +90 mV. At 4° C the critical duration was about 11 msec at -30 mV, 4 msec at 0 mV and 2 msec at +40 mV.
3. For pulses where V > -10 mV the threshold criterion at 4° C was that the `area above -30 mV' must exceed about 120 mV msec.
4. The effect of a brief subthreshold pulse declines with a time constant of about 3 msec at -100 mV and about 8 msec at -85 mV at 4° C.
5. Although the strength—duration curve is well fitted by assuming a first-order mechanism in which the rate of release of activator increases with membrane potential, other experiments show that the over-all mechanism is probably second order in time.
6. A short pulse must be at least 50% threshold if it is to give a visible contraction when added to a long pulse which is just below rheobase.
7. Delayed rectification was conspicuous with medium or long pulses which were just below the mechanical threshold, but short pulses could give contraction without turning on any appreciable potassium conductance.
8. The Appendix extends Falk's (1968) treatment of the charging of the tubular system under a voltage clamp.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian R. H., Costantin L. L., Peachey L. D. Radial spread of contraction in frog muscle fibres. J Physiol. 1969 Sep;204(1):231–257. doi: 10.1113/jphysiol.1969.sp008910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costantin L. L. The effect o f calcium on contraction and conductance thresholds in frog skeletal muscle. J Physiol. 1968 Mar;195(1):119–132. doi: 10.1113/jphysiol.1968.sp008450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg R. S., Gage P. W. Frog skeletal muscle fibers: changes in electrical properties after disruption of transverse tubular system. Science. 1967 Dec 29;158(3809):1700–1701. doi: 10.1126/science.158.3809.1700. [DOI] [PubMed] [Google Scholar]
- FALK G., FATT P. LINEAR ELECTRICAL PROPERTIES OF STRIATED MUSCLE FIBRES OBSERVED WITH INTRACELLULAR ELECTRODES. Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:69–123. doi: 10.1098/rspb.1964.0030. [DOI] [PubMed] [Google Scholar]
- FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falk G. Predicted delays in the activation of the contractile system. Biophys J. 1968 May;8(5):608–625. doi: 10.1016/S0006-3495(68)86511-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J Physiol. 1960 Sep;153:370–385. doi: 10.1113/jphysiol.1960.sp006540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao C. Y., Stanfield P. R. Actions of some anions on electrical properties and mechanical threshold of frog twitch muscle. J Physiol. 1968 Sep;198(2):291–309. doi: 10.1113/jphysiol.1968.sp008607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
- Sugi H., Ochi R. The mode of transverse spread of contraction initiated by local activation in single frog muscle fibers. J Gen Physiol. 1967 Oct;50(9):2167–2176. doi: 10.1085/jgp.50.9.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]