Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1969 Apr;201(2):425–435. doi: 10.1113/jphysiol.1969.sp008764

The optical activity of bleached retinal receptors

Gabrielle M Villermet, R A Weale
PMCID: PMC1351617  PMID: 5780551

Abstract

1. A study was made of the birefringence of retinal receptors obtained from the retinae of frogs, cats, rabbits and goldfish.

2. Normal rods and cones show similar optical activity.

3. The effects of fixatives, lipid solvents, de- and rehydration, and temperature were examined.

4. Rods fixed with formaldehyde preserve normal optical activity for a long time while glutaraldehyde changes it swiftly in a manner similar to that resulting from the application of heat.

5. Alcohol acts like a denaturing agent rather than as a solvent for rod lipids.

6. The action of glutaraldehyde on goldfish rods is instantaneous but cones preserve their normal activity for up to 1 hr.

7. A number of striking parallels between the presence of the R2 component of the early receptor potential (as reported in the literature) and optical activity are listed; it is suggested that normal optical activity is a prerequisite for the recording, if not the elicitation, of R2.

Full text

PDF
425

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arden G. B., Miller G. L. Generation of the vertebrate early receptor potential and its relation to rhodopsin chemistry. Nature. 1968 May 18;218(5142):646–649. doi: 10.1038/218646a0. [DOI] [PubMed] [Google Scholar]
  2. BROWN K. T., MURAKAMI M. A NEW RECEPTOR POTENTIAL OF THE MONKEY RETINA WITH NO DETECTABLE LATENCY. Nature. 1964 Feb 8;201:626–628. doi: 10.1038/201626a0. [DOI] [PubMed] [Google Scholar]
  3. Bangham A. D., Haydon D. A. Ultrastructure of membranes: biomolecular organization. Br Med Bull. 1968 May;24(2):124–126. doi: 10.1093/oxfordjournals.bmb.a070612. [DOI] [PubMed] [Google Scholar]
  4. Brindley G. S., Gardner-Medwin A. R. The origin of the early receptor potential of the retina. J Physiol. 1966 Jan;182(1):185–194. doi: 10.1113/jphysiol.1966.sp007817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen L. B., Keynes R. D., Hille B. Light scattering and birefringence changes during nerve activity. Nature. 1968 May 4;218(5140):438–441. doi: 10.1038/218438a0. [DOI] [PubMed] [Google Scholar]
  6. Cone R. A. The early receptor potential of the vertebrate eye. Cold Spring Harb Symp Quant Biol. 1965;30:483–491. doi: 10.1101/sqb.1965.030.01.046. [DOI] [PubMed] [Google Scholar]
  7. DENTON E. J., WYLLIE J. H. Study of the photosensitive pigments in the pink and green rods of the frog. J Physiol. 1955 Jan 28;127(1):81–89. doi: 10.1113/jphysiol.1955.sp005239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eichberg J., Hess H. H. The lipid composition of frog retinal rod outer segments. Experientia. 1967 Dec 15;23(12):993–994. doi: 10.1007/BF02136402. [DOI] [PubMed] [Google Scholar]
  9. Kito Y., Takezaki M. Optical rotation of irradiated rhodopsin solution. Nature. 1966 Jul 9;211(5045):197–198. doi: 10.1038/211197a0. [DOI] [PubMed] [Google Scholar]
  10. Lenard J., Singer S. J. Alteration of the conformation of proteins in red blood cell membranes and in solution by fixatives used in electron microscopy. J Cell Biol. 1968 Apr;37(1):117–121. doi: 10.1083/jcb.37.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liebman P. A., Entine G. Visual pigments of frog and tadpole (Rana pipiens). Vision Res. 1968 Jul;8(7):761–775. doi: 10.1016/0042-6989(68)90128-4. [DOI] [PubMed] [Google Scholar]
  12. Lucy J. A. Ultrastructure of membranes: micellar organization. Br Med Bull. 1968 May;24(2):127–129. doi: 10.1093/oxfordjournals.bmb.a070613. [DOI] [PubMed] [Google Scholar]
  13. MATTHEWS R. G., HUBBARD R., BROWN P. K., WALD G. TAUTOMERIC FORMS OF METARHODOPSIN. J Gen Physiol. 1963 Nov;47:215–240. doi: 10.1085/jgp.47.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Noell W. K., Walker V. S., Kang B. S., Berman S. Retinal damage by light in rats. Invest Ophthalmol. 1966 Oct;5(5):450–473. [PubMed] [Google Scholar]
  15. Pak W. L., Helmrich H. G. Absence of photodichroism in the retinal receptors. Vision Res. 1968 May;8(5):585–589. doi: 10.1016/0042-6989(68)90099-0. [DOI] [PubMed] [Google Scholar]
  16. Pak W. L. Some properties of the early electrical response in the vertebrate retina. Cold Spring Harb Symp Quant Biol. 1965;30:493–499. doi: 10.1101/sqb.1965.030.01.047. [DOI] [PubMed] [Google Scholar]
  17. Patel S. C. Determination of the sites of rhodopsin in the ultrastructure of the mammalian rod photoreceptor using a selective fixation technique. II. Br J Physiol Opt. 1967 Spring;24(2):61–102. [PubMed] [Google Scholar]
  18. Robertson J. D. Granulo-fibrillar and globular substructure in unit membranes. Ann N Y Acad Sci. 1966 Jul 14;137(2):421–440. doi: 10.1111/j.1749-6632.1966.tb50174.x. [DOI] [PubMed] [Google Scholar]
  19. Takeguchi N., Nakagaki M. Determination of small birefringence in the bovine lens capsule by optical rotatory dispersion. J Opt Soc Am. 1968 Mar;58(3):415–418. doi: 10.1364/josa.58.000415. [DOI] [PubMed] [Google Scholar]
  20. Takezaki M., Kito Y. Circular dichroism of rhodopsin and isorhodopsin. Nature. 1967 Sep 9;215(5106):1197–1199. doi: 10.1038/2151197a0. [DOI] [PubMed] [Google Scholar]
  21. Villermet G. M., Weale R. A. The biomicroscopy of the living frog retina. J R Microsc Soc. 1965 Dec;85(4):565–569. doi: 10.1111/j.1365-2818.1965.tb02157.x. [DOI] [PubMed] [Google Scholar]
  22. Weale R. A. Optical activity and the fixation of rods and cones. Nature. 1968 Nov 9;220(5167):583–583. doi: 10.1038/220583a0. [DOI] [PubMed] [Google Scholar]
  23. Whittaker V. P. Structure and function of animal-cell membranes. Br Med Bull. 1968 May;24(2):101–106. doi: 10.1093/oxfordjournals.bmb.a070608. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES