Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1968 Jul;197(2):255–278. doi: 10.1113/jphysiol.1968.sp008558

Sodium fluxes in diaphragm muscle and the effects of insulin and serum proteins

R Creese, D J Jenden
PMCID: PMC1351798  PMID: 5716845

Abstract

1. Thin diaphragm muscles in dialysed serum maintained their total sodium at values similar to those found in vivo. The fibre sodium exchanged with a half-time of 5 min, and the flux was 10 p-mole.cm-2.sec-1. The internal sodium was less than 10 μmoles/g fibre water and the ratio of external to internal sodium was at least 15. The calculated energy expenditure for sodium extrusion was less than 2% of the resting metabolism.

2. In physiological saline the half-time for exchange of fibre sodium was similar to that in serum, but in saline there was an increase in sodium permeability and a raised total and fibre sodium.

3. Muscles treated with insulin (0·02 u./ml.) showed a more rapid exchange of sodium compared with muscles in saline, with no change in the permeability to sodium. Insulin also affected sodium movements in the absence of external glucose.

4. In saline the fraction of sodium which exchanged rapidly occupied 0·33 by volume of the muscle, after corrections for diffusion, and this value was similar to the mannitol space.

5. Fibre diameters were measured in frozen sections. Muscles prepared by fixation and embedding showed marked shrinkage.

Full text

PDF
255

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong W. M., Knoebel S. B. The effect of serum albumin on the efflux of K-42 from frog sartorius muscle. J Cell Physiol. 1966 Apr;67(2):211–216. doi: 10.1002/jcp.1040670202. [DOI] [PubMed] [Google Scholar]
  2. Bittar E. E. Insulin and the sodium pump of the Maia muscle fibre. Nature. 1967 May 13;214(5089):726–727. doi: 10.1038/214726a0. [DOI] [PubMed] [Google Scholar]
  3. CAREY M. J., CONWAY E. J. Comparison of various media for immersing frog sartorii at room temperature, and evidence for the regional distribution of fibre Na+. J Physiol. 1954 Aug 27;125(2):232–250. doi: 10.1113/jphysiol.1954.sp005154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CREESE R., D'SILVA J. L., HASHISH S. E. Inulin space and fibre size of stimulated rat muscle. J Physiol. 1955 Mar 28;127(3):525–532. doi: 10.1113/jphysiol.1955.sp005274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CREESE R., D'SILVA J. L., NORTHOVER J. Effect of insulin on sodium in muscle. Nature. 1958 May 3;181(4618):1278–1278. doi: 10.1038/1811278a0. [DOI] [PubMed] [Google Scholar]
  6. CREESE R. Measurement of cation fluxes in rat diaphragm. Proc R Soc Lond B Biol Sci. 1954 Sep 27;142(909):497–513. doi: 10.1098/rspb.1954.0039. [DOI] [PubMed] [Google Scholar]
  7. CREESE R., NORTHOVER J. Maintenance of isolated diaphragm with normal sodium content. J Physiol. 1961 Feb;155:343–357. doi: 10.1113/jphysiol.1961.sp006632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CREESE R., SCHOLES N. W., WHALEN W. J. Resting potentials of diaphragm muscle after prolonged anoxia. J Physiol. 1958 Feb 17;140(2):301–317. doi: 10.1113/jphysiol.1958.sp005935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CREESE R. SODIUM EXCHANGE IN RAT MUSCLE. Nature. 1964 Feb 1;201:505–506. doi: 10.1038/201505b0. [DOI] [PubMed] [Google Scholar]
  10. CREESE R., TAYLOR D. B., TILTON B. The influence of curare on the uptake and release of a neuromuscular blocking agent labeled with radioactive iodine. J Pharmacol Exp Ther. 1963 Jan;139:8–17. [PubMed] [Google Scholar]
  11. FLUCKIGER E., VERZAR F. Der Einfluss des Kohlenhydratstoffwechsels auf den Natrium- und Kaliumaustausch des überlebenden muskels. Helv Physiol Pharmacol Acta. 1954;12(1):50–56. [PubMed] [Google Scholar]
  12. FLUCKIGER E., VERZAR F. Vergleichende Untersuchungen über die Wirkung von Desoxycorticosteron und Hydrocortison auf den Kohlehydrat-, Natrium- und Kaliumstoffwechsel des isolierten Muskels. Helv Physiol Pharmacol Acta. 1957;15(2):293–303. [PubMed] [Google Scholar]
  13. Goodford P. J., Leach E. H. The extracellular space of the smooth muscle of the guinea-pig taenia coli. J Physiol. 1966 Sep;186(1):1–10. doi: 10.1113/jphysiol.1966.sp008016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HARRIS E. J. THE CHLORIDE PERMEABILITY OF FROG SARTORIUS. J Physiol. 1965 Jan;176:123–135. doi: 10.1113/jphysiol.1965.sp007539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HODGKIN A. L., HOROWICZ P. Movements of Na and K in single muscle fibres. J Physiol. 1959 Mar 3;145(2):405–432. doi: 10.1113/jphysiol.1959.sp006150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HODGKIN A. L. Ionic movements and electrical activity in giant nerve fibres. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):1–37. doi: 10.1098/rspb.1958.0001. [DOI] [PubMed] [Google Scholar]
  18. KERNAN R. P. RESTING POTENTIAL OF ISOLATED RAT MUSCLES MEASURED IN PLASMA. Nature. 1963 Nov 2;200:474–475. doi: 10.1038/200474a0. [DOI] [PubMed] [Google Scholar]
  19. KERNAN R. P. The role of lactate in the active excretion of sodium by frog muscle. J Physiol. 1962 Jun;162:129–137. doi: 10.1113/jphysiol.1962.sp006919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. KEYNES R. D., LEWIS P. R. The resting exchange of radioactive potassium in crab nerve. J Physiol. 1951 Mar;113(1):73–98. doi: 10.1113/jphysiol.1951.sp004557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. KEYNES R. D., MAISEL G. W. The energy requirement for sodium extrusion from a frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):383–392. doi: 10.1098/rspb.1954.0031. [DOI] [PubMed] [Google Scholar]
  22. KEYNES R. D., SWAN R. C. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol. 1959 Oct;147:591–625. doi: 10.1113/jphysiol.1959.sp006264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. KEYNES R. D. The ionic fluxes in frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):359–382. doi: 10.1098/rspb.1954.0030. [DOI] [PubMed] [Google Scholar]
  24. KEYNES R. D. The ionic movements during nervous activity. J Physiol. 1951 Jun;114(1-2):119–150. doi: 10.1113/jphysiol.1951.sp004608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. KLAUS W., LUELLMANN H., MUSCHOLL E. [Potassium flux of normal and denervated rat diaphragm]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;271:761–775. [PubMed] [Google Scholar]
  26. KRNJEVIC K., MITCHELL J. F. Diffusion of acetylcholine in agar gels and in the isolated rat diaphragm. J Physiol. 1960 Oct;153:562–572. doi: 10.1113/jphysiol.1960.sp006555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kipnis D. M., Parrish J. E. Role of Na+ and K+ on sugar (2-deoxyglucose) and amino acid (alpha-aminoisobutyric acid) transport in striated muscle. Fed Proc. 1965 Sep-Oct;24(5):1051–1059. [PubMed] [Google Scholar]
  28. LEV A. A. DETERMINATION OF ACTIVITY AND ACTIVITY COEFFICIENTS OF POTASSIUM AND SODIUM IONS IN FROG MUSCLE FIBRES. Nature. 1964 Mar 14;201:1132–1134. doi: 10.1038/2011132a0. [DOI] [PubMed] [Google Scholar]
  29. Levine R. Cell membrane as a primary site of insulin action. Fed Proc. 1965 Sep-Oct;24(5):1071–1073. [PubMed] [Google Scholar]
  30. NORMAN D., MENOZZI P., REID D., LESTER G., HECHTER O. Action of insulin on sugar permeability in rat diaphragm muscle. J Gen Physiol. 1959 Jul 20;42(6):1277–1299. doi: 10.1085/jgp.42.6.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. OGSTON A. G., PHELPS C. F. The partition of solutes between buffer solutions and solutions containing hyaluronic acid. Biochem J. 1961 Apr;78:827–833. doi: 10.1042/bj0780827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. ZIERLER K. L. Effect of insulin on membrane potential and potassium content of rat muscle. Am J Physiol. 1959 Sep;197:515–523. doi: 10.1152/ajplegacy.1959.197.3.515. [DOI] [PubMed] [Google Scholar]
  33. ZIERLER K. L. Hyperpolarization of muscle by insulin in a glucose-free environment. Am J Physiol. 1959 Sep;197:524–526. doi: 10.1152/ajplegacy.1959.197.3.524. [DOI] [PubMed] [Google Scholar]
  34. Zierler K. L., Rogus E., Hazlewood C. F. Effect of insulin on potassium flux and water and electrolyte content of muscles from normal and from hypophysectomized rats. J Gen Physiol. 1966 Jan;49(3):433–456. doi: 10.1085/jgp.49.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES