Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Aug;270(1):151–163. doi: 10.1113/jphysiol.1977.sp011943

A potassium contribution to the response of the barnacle photoreceptor.

M Hanani, C Shaw
PMCID: PMC1353422  PMID: 915767

Abstract

1. Intracellular recording from photoreceptors in the lateral eye of the barnacle show a brief negative-going 'dip' shortly after the onset of the late receptor potential. This phase can sometimes result in a hyperpolarization relative to the resting membrane potential. 2. The dip is prominent in light-adapted cells and is reduced by dark-adaptation. Low extracellular Ca2+ also reduces it. 3. The amplitude of the dip changes inversely with the K+ concentration in the saline. 4. The amplitude of the dip depends on the membrane potential, with a reversal potential near - 80 mV. 5. K+ blocking agents such as quinine and quinidine reduce or abolish the dip. 6. These observations indicate that the dip is due to a brief increase in K+ conductance which may be dependent on an influx of Ca ions. The fast decay of this phase may be brought about by a rapid uptake of Ca2+ by an intracellular mechanism.

Full text

PDF
151

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown A. M., Brown H. M. Light response of a giant Aplysia neuron. J Gen Physiol. 1973 Sep;62(3):239–254. doi: 10.1085/jgp.62.3.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown H. M., Hagiwara S., Koike H., Meech R. M. Membrane properties of a barnacle photoreceptor examined by the voltage clamp technique. J Physiol. 1970 Jun;208(2):385–413. doi: 10.1113/jphysiol.1970.sp009127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown H. M., Ottoson D. Dual role for potassium in Balanus photoreceptor: antagonist of calcium and suppression of light-induced current. J Physiol. 1976 May;257(2):355–378. doi: 10.1113/jphysiol.1976.sp011373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown J. E., Blinks J. R. Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors. Detection with aequorin. J Gen Physiol. 1974 Dec;64(6):643–665. doi: 10.1085/jgp.64.6.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown J. E., Lisman J. E. Intracellular Ca modulates sensitivity and time scale in Limulus ventral photoreceptors. Nature. 1975 Nov 20;258(5532):252–254. doi: 10.1038/258252a0. [DOI] [PubMed] [Google Scholar]
  6. Brown J. E., Mote M. I. Ionic dependence of reversal voltage of the light response in Limulus ventral photoreceptors. J Gen Physiol. 1974 Mar;63(3):337–350. doi: 10.1085/jgp.63.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chandler W. K., Meves H. Voltage clamp experiments on internally perfused giant axons. J Physiol. 1965 Oct;180(4):788–820. doi: 10.1113/jphysiol.1965.sp007732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Detwiler P. B. Multiple light-evoked conductance changes in the photoreceptors of Hermissenda crassicornis. J Physiol. 1976 Apr;256(3):691–708. doi: 10.1113/jphysiol.1976.sp011346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dodge F. A., Jr, Knight B. W., Toyoda J. Voltage noise in Limulus visual cells. Science. 1968 Apr 5;160(3823):88–90. doi: 10.1126/science.160.3823.88. [DOI] [PubMed] [Google Scholar]
  10. Dubois J. M., Bergman C. Cesium induced rectifications in frog myelinated fibres. Pflugers Arch. 1975 Apr 2;355(4):361–364. doi: 10.1007/BF00579857. [DOI] [PubMed] [Google Scholar]
  11. FAHRENBACK W. H. THE MICROMORPHOLOGY OF SOME SIMPLE PHOTORECEPTORS. Z Zellforsch Mikrosk Anat. 1965 Apr 8;66(2):233–254. [PubMed] [Google Scholar]
  12. FUORTES M. G., HODGKIN A. L. CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS. J Physiol. 1964 Aug;172:239–263. doi: 10.1113/jphysiol.1964.sp007415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gorman A. L., McReynolds J. S. Control of membrane N+ permeability in a hyperpolarizing photoreceptor: similar effect of light and metabolic inhibitors. Science. 1974 Aug 16;185(4151):620–621. doi: 10.1126/science.185.4151.620. [DOI] [PubMed] [Google Scholar]
  14. Hagins W. A. The visual process: Excitatory mechanisms in the primary receptor cells. Annu Rev Biophys Bioeng. 1972;1:131–158. doi: 10.1146/annurev.bb.01.060172.001023. [DOI] [PubMed] [Google Scholar]
  15. Hanani M., Hillman P. Adaptation and facilitation in the barnacle photoreceptor. J Gen Physiol. 1976 Feb;67(2):235–276. doi: 10.1085/jgp.67.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holt C. E., Brown J. E. Ion fluxes in photoreception in Limulus polyphemus ventral eye. I. The response of potassium efflux to light. Biochim Biophys Acta. 1972 Jul 3;274(1):140–157. doi: 10.1016/0005-2736(72)90289-1. [DOI] [PubMed] [Google Scholar]
  17. Koike H., Brown H. M., Hagiwara S. Hyperpolarization of a barnacle photoreceptor membrane following illumination. J Gen Physiol. 1971 Jun;57(6):723–737. doi: 10.1085/jgp.57.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krnjević K., Lisiewicz A. Injections of calcium ions into spinal motoneurones. J Physiol. 1972 Sep;225(2):363–390. doi: 10.1113/jphysiol.1972.sp009945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Krnjevíc K., Puil E., Werman R. Evidence for Ca2+-activated K+ conductance in cat spinal motoneurons from intracellular EGTA injections. Can J Physiol Pharmacol. 1975 Dec;53(6):1214–1218. doi: 10.1139/y75-171. [DOI] [PubMed] [Google Scholar]
  20. Lisman J. E., Brown J. E. The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J Gen Physiol. 1972 Jun;59(6):701–719. doi: 10.1085/jgp.59.6.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McReynolds J. S., Gorman A. L. Ionic basis of hyperpolarizing receptor potential in scallop eye: increase in permeability to potassium ions. Science. 1974 Feb 15;183(4125):658–659. doi: 10.1126/science.183.4125.658. [DOI] [PubMed] [Google Scholar]
  22. Meech R. W. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp Biochem Physiol A Comp Physiol. 1972 Jun 1;42(2):493–499. doi: 10.1016/0300-9629(72)90128-4. [DOI] [PubMed] [Google Scholar]
  23. Meech R. W., Standen N. B. Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. J Physiol. 1975 Jul;249(2):211–239. doi: 10.1113/jphysiol.1975.sp011012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meech R. W. The sensitivity of Helix aspersa neurones to injected calcium ions. J Physiol. 1974 Mar;237(2):259–277. doi: 10.1113/jphysiol.1974.sp010481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. 3. A voltage-clamp study. J Gen Physiol. 1969 Sep;54(3):331–351. doi: 10.1085/jgp.54.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rose B., Loewenstein W. R. Calcium ion distribution in cytoplasm visualised by aequorin: diffusion in cytosol restricted by energized sequestering. Science. 1975 Dec 19;190(4220):1204–1206. doi: 10.1126/science.1198106. [DOI] [PubMed] [Google Scholar]
  27. Stieve H., Malinowska T., Sonnemann D. Dependence of potassium ion and sodium ion exchange on light in the crayfish retina. Z Naturforsch C. 1974 Nov-Dec;29(11-12):745–753. doi: 10.1515/znc-1974-11-1216. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES