Abstract
1. The entry of Li into the vascular smooth muscle cells of the rat tail artery follows first-order kinetics with a rate constant of approximately 1·3 hr-1 at 10 mM-[Li]o. The rate constant decreases gradually to ca. 0·5 hr-1 when the [Li]o/[Na]o ratio is increased.
2. Replacement of Na with Li over the range of [Li]o from 1 to 115 mM, accomplished at constant ionic strength and osmolarity of the bathing solution, produces changes in cell Na and K without apparent change in cell water. At equilibrium, cell Li increases in linear proportion to [Li]o, at a ratio of 2:1 throughout the range. The increase in cell Li is associated with inverse falls in both cell K and Na such that the ratio of cell K to cell Na remains constant at ca. 10:1 throughout.
3. The changes in the ionic contents, induced by equilibration of the tissue with a Na-free, Li-substituted solution, are reversible.
4. Replacement of Na with sucrose over the range of 40-115 mM results, at equilibrium, in a linear fall in cell Na without conspicuous change in cell K. A constant portion of the cell Na, ca. 10 m-mole/kg dry wt., does not participate in this exchange.
5. At equilibrium, reductions in [Na]o are reflected in corresponding reductions in apparent [Na]i such that the [Na]o/[Na]i ratio remains constant.
Full text
PDF![195](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/1124d90c4485/jphysiol00800-0217.png)
![196](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/51f2c8f3a58b/jphysiol00800-0218.png)
![197](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/1f9f21f095e8/jphysiol00800-0219.png)
![198](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/80c1e1f2b1aa/jphysiol00800-0220.png)
![199](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/b3f0957416e9/jphysiol00800-0221.png)
![200](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/5cf8ef59580b/jphysiol00800-0222.png)
![201](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/d95fb62b4eaf/jphysiol00800-0223.png)
![202](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/524cbb6682b2/jphysiol00800-0224.png)
![203](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/774239ecc9c5/jphysiol00800-0225.png)
![204](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/029d152771b3/jphysiol00800-0226.png)
![205](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/3e016cbab6fb/jphysiol00800-0227.png)
![206](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/dca6f82428c0/jphysiol00800-0228.png)
![207](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/a2897c20b568/jphysiol00800-0229.png)
![208](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3064/1353425/53fa00ee0fe0/jphysiol00800-0230.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brace R. A., Anderson D. K. Predicting transient and steady-state changes in resting membrane potential. J Appl Physiol. 1973 Jul;35(1):90–94. doi: 10.1152/jappl.1973.35.1.90. [DOI] [PubMed] [Google Scholar]
- Friedman S. M. Comparison of net fluxes of Li and Na in vascular smooth muscle. Blood Vessels. 1975;12(4):219–235. doi: 10.1159/000158058. [DOI] [PubMed] [Google Scholar]
- Friedman S. M. Lithium substitution and the distribution of sodium in the rat tail artery. Circ Res. 1974 Feb;34(2):168–175. doi: 10.1161/01.res.34.2.168. [DOI] [PubMed] [Google Scholar]
- Friedman S. M., Mar M., Nakashima M. Lithium substitution analysis of Na and K phases in a small artery. Blood Vessels. 1974;11(1-2):55–64. doi: 10.1159/000157999. [DOI] [PubMed] [Google Scholar]
- Hermsmeyer K. Electrogenesis of increased norepinephrine sensitivity of arterial vascular muscle in hypertension. Circ Res. 1976 May;38(5):362–367. doi: 10.1161/01.res.38.5.362. [DOI] [PubMed] [Google Scholar]
- Hinke J. A., Caillé J. P., Gayton D. C. Distribution and state of monovalent ions in skeletal muscle based on ion electrode, isotope, and diffusion analyses. Ann N Y Acad Sci. 1973 Mar 30;204:274–296. doi: 10.1111/j.1749-6632.1973.tb30785.x. [DOI] [PubMed] [Google Scholar]
- Holloway E. T., Bohr D. F. Reactivity of vascular smooth muscle in hypertensive rats. Circ Res. 1973 Dec;33(6):678–685. doi: 10.1161/01.res.33.6.678. [DOI] [PubMed] [Google Scholar]
- Palatý V., Gustafson B. K., Friedman S. M. Maintenance of the ionic composition of the incubated artery. Can J Physiol Pharmacol. 1971 Feb;49(2):106–112. doi: 10.1139/y71-016. [DOI] [PubMed] [Google Scholar]
- Reuter H., Blaustein M. P., Haeusler G. Na-Ca exchange and tension development in arterial smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):87–94. doi: 10.1098/rstb.1973.0011. [DOI] [PubMed] [Google Scholar]