Abstract
1. The effects of Mn2+ in particular but also of Ni2+, Co2+, Cd2+, verapamil and D600 on the contraction of isolated frog atrial trabeculae have been investigated. Contraction was initiated either by electrical stimulation, or by raising the [K]o or by lowering the [Na]o.
2. Mn ions like Ca ions cause a hyperpolarization of the cell membrane and a rise in the threshold for the action potential and twitch. Mn ions, particularly at low concentrations, reduce the overshoot of the ventricular action potential.
3. Mn ions reduce the strength of the regularly evoked heart beats. Prolonged exposure, in beating hearts, results in a rise in resting tension and often a small recovery of the heart beat.
4. In normal Ringer solution and in Ringer free of Na ions, the addition of Mn causes the tension—depolarization curve to be displaced by an amount equivalent to an 18 mV hyperpolarization of the membrane potential for a tenfold increase in the divalent cation concentration.
5. Mn, Co, Ni and Cd ions all cause a marked reduction in the tension generated by exclusion of Na ions from the bathing fluid. In the presence of these divalent cations the contracture divides into an initial phasic and a later tonic contraction. This inhibition is reversed by raising the [Ca]o, while the tension developed during the initial phasic contraction varies with the [Ca]o/[Mn]o quotient.
6. A similar tonic contracture is initiated after exposure to Na-free fluid containing a high [Mn]o by the addition of a small concentration of Na, Li, hydrazinium or hydroxylammonium ions.
7. The organic `Ca antagonists' verapamil and D600 have little effect on the contracture induced by lowering [Na]o even after prolonged exposure at relatively high concentrations but they do inhibit the twitch contraction and the K contractures.
8. The effects of Mn on the Na-withdrawal contracture of frog heart can be interpreted in terms of an exclusively extracellular effect where Mn ions resemble Na ions in their action, and both antagonize the movement of Ca across the cell membrane.
9. The experimental evidence suggests that the K contracture in frog heart is initiated by a mechanism which is, in some ways different to that underlying the Na-withdrawal contracture, and may involve two different sources of activator Ca.
10. The several different effects of Mn on the frog heart probably reflects the ability of this cation to interfere with many processes involving Ca, and that there are a number of such processes involved in the results described in this work. The effects of Mn are more complex than might be generally supposed.
Full text
PDF























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F., Hodgkin A. L., Ridgway E. B. Depolarization and calcium entry in squid giant axons. J Physiol. 1971 Nov;218(3):709–755. doi: 10.1113/jphysiol.1971.sp009641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F., Meves H., Ridgway E. B. Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axons. J Physiol. 1973 Jun;231(3):511–526. doi: 10.1113/jphysiol.1973.sp010246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A., Ellis D. Uptake and loss of manganese from perfused frog ventricles. J Physiol. 1977 Nov;272(2):355–366. doi: 10.1113/jphysiol.1977.sp012048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A., Miller D. J. The effects of caffeine on the contraction of the frog heart. J Physiol. 1974 Nov;242(3):589–613. doi: 10.1113/jphysiol.1974.sp010725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A., Niedergerke R. Effects of calcium on the contraction of the hypodynamic frog heart. J Physiol. 1970 Dec;211(2):389–421. doi: 10.1113/jphysiol.1970.sp009284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A. The onic dependence of the strength and spontaneous relations of the potassium contracture induced in the heart of the frog Rana pipiens. J Physiol. 1973 Jun;231(2):209–232. doi: 10.1113/jphysiol.1973.sp010229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A., Tunstall J. The dependence of the contractile force generated by frog auricular trabeculae upon the external calcium concentration. J Physiol. 1971 May;215(1):139–162. doi: 10.1113/jphysiol.1971.sp009462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiarandini D. J., Stefani E. Effects of manganese on the electrical and mechanical properties of frog skeletal muscle fibres. J Physiol. 1973 Jul;232(1):129–147. doi: 10.1113/jphysiol.1973.sp010260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Einwächter H. M., Haas H. G., Kern R. Membrane current and contraction in frog atrial fibres. J Physiol. 1972 Dec;227(1):141–171. doi: 10.1113/jphysiol.1972.sp010024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J Gen Physiol. 1966 Mar;49(4):793–806. doi: 10.1085/jgp.49.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohlhardt M., Bauer B., Krause H., Fleckenstein A. Selective inhibition of the transmembrane Ca conductivity of mammalian myocardial fibres by Ni, Co and Mn ions. Pflugers Arch. 1973 Jan 22;338(2):115–123. doi: 10.1007/BF00592747. [DOI] [PubMed] [Google Scholar]
- LUTTGAU H. C., NIEDERGERKE R. The antagonism between Ca and Na ions on the frog's heart. J Physiol. 1958 Oct 31;143(3):486–505. doi: 10.1113/jphysiol.1958.sp006073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Léoty C., Raymond G. Mechanical activity and ionic currents in frog atrial trabeculae. Pflugers Arch. 1972;334(2):114–128. doi: 10.1007/BF00586785. [DOI] [PubMed] [Google Scholar]
- Mascher D. Electrical and mechanical responses in ventricular muscle fibers during barium perfusion. Pflugers Arch. 1973 Sep 16;342(4):325–346. doi: 10.1007/BF00586104. [DOI] [PubMed] [Google Scholar]
- Meves H., Vogel W. Calcium inward currents in internally perfused giant axons. J Physiol. 1973 Nov;235(1):225–265. doi: 10.1113/jphysiol.1973.sp010386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller D. J., Moisescu D. G. The effects of very low external calcium and sodium concentrations on cardiac contractile strength and calcium-sodium antagonism. J Physiol. 1976 Jul;259(2):283–308. doi: 10.1113/jphysiol.1976.sp011466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NIEDERGERKE R. Movements of Ca in beating ventricles of the frog heart. J Physiol. 1963 Jul;167:551–580. doi: 10.1113/jphysiol.1963.sp007167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niedergerke R., Orkand R. K. The dual effect of calcium on the action potential of the frog's heart. J Physiol. 1966 May;184(2):291–311. doi: 10.1113/jphysiol.1966.sp007916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ochi R. Manganese action potentials in mammalian cardiac muscle. Experientia. 1975 Sep 15;31(9):1048–1049. doi: 10.1007/BF02326952. [DOI] [PubMed] [Google Scholar]
- Ochi R. The slow inward current and the action of manganese ions in guinea-pig's myocardium. Pflugers Arch. 1970;316(1):81–94. doi: 10.1007/BF00587898. [DOI] [PubMed] [Google Scholar]
- Ochi R., Trautwein W. The dependence of cardiac contraction on depolarization and slow inward current. Pflugers Arch. 1971;323(3):187–203. doi: 10.1007/BF00586383. [DOI] [PubMed] [Google Scholar]
- Oota I., Takauji M., Nagai T. Effect of manganese ions on excitation-contraction coupling in frog sartorius muscle. Jpn J Physiol. 1972 Aug;22(4):379–392. doi: 10.2170/jjphysiol.22.379. [DOI] [PubMed] [Google Scholar]
- Reuter H. Exchange of calcium ions in the mammalian myocardium. Mechanisms and physiological significance. Circ Res. 1974 May;34(5):599–605. doi: 10.1161/01.res.34.5.599. [DOI] [PubMed] [Google Scholar]
- Rougier O., Vassort G., Garnier D., Gargouil Y. M., Coraboeuf E. Existence and role of a slow inward current during the frog atrial action potential. Pflugers Arch. 1969;308(2):91–110. doi: 10.1007/BF00587018. [DOI] [PubMed] [Google Scholar]
- Takeya K., Reiter M. Effect of divalent manganese ions on action potential and contractility of cardiac muscle. Naunyn Schmiedebergs Arch Pharmacol. 1972;275(2):213–226. doi: 10.1007/BF00508909. [DOI] [PubMed] [Google Scholar]
- Tarr M., Trank J. W. Limitations of the double sucrose gap voltage clamp technique in tension-voltage determinations on frog atrial muscle. Circ Res. 1976 Jul;39(1):106–112. doi: 10.1161/01.res.39.1.106. [DOI] [PubMed] [Google Scholar]
- Vassort G., Rougier O. Membrane potential and slow inward current dependence of frog cardiac mechanical activity. Pflugers Arch. 1972;331(3):191–203. doi: 10.1007/BF00589126. [DOI] [PubMed] [Google Scholar]
