Full text
PDF![283](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/556f46397937/jphysiol01317-0096.png)
![284](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/2afc1031e005/jphysiol01317-0097.png)
![285](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/d7dac2a18b03/jphysiol01317-0098.png)
![286](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/9b4e6f7d1732/jphysiol01317-0099.png)
![287](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/870386446ef2/jphysiol01317-0100.png)
![288](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/879ff55c07ea/jphysiol01317-0101.png)
![289](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/0fe455b35866/jphysiol01317-0102.png)
![290](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/239176721f13/jphysiol01317-0103.png)
![291](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/4be1f3013fc5/jphysiol01317-0104.png)
![292](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/e34bf936945f/jphysiol01317-0105.png)
![293](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/0ce06a038528/jphysiol01317-0106.png)
![294](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/c646eebea651/jphysiol01317-0107.png)
![295](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/db1b6e2ff759/jphysiol01317-0108.png)
![296](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/fbaa04f7bd70/jphysiol01317-0109.png)
![297](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/954db9aeec2a/jphysiol01317-0110.png)
![298](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/ce4aa85fd96c/jphysiol01317-0111.png)
![299](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa2/1356805/bb10471c6a50/jphysiol01317-0112.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BORGHGRAEF R. R., PITTS R. F. The distribution of chlormerodrin (neohydrin) in tissues of the rat and dog. J Clin Invest. 1956 Jan;35(1):31–37. doi: 10.1172/JCI103249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAWAZ G., FAWAZ E. N. Mechanism of action of mercurial diuretics. II. Proc Soc Exp Biol Med. 1954 Oct;87(1):30–34. doi: 10.3181/00379727-87-21275. [DOI] [PubMed] [Google Scholar]
- KLEINZELLER A., CORT J. H. The mechanism of action of mercurial preparations on transport processes and the role of thiol groups in the cell membrane of renal tubular cells. Biochem J. 1957 Sep;67(1):15–24. doi: 10.1042/bj0670015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAIZELS M., REMINGTON M. Mercaptomerin and water exchange in cortex slices of rat kidney. J Physiol. 1958 Sep 23;143(2):275–282. doi: 10.1113/jphysiol.1958.sp006058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAIZELS M., REMINGTON M., TRUSCOE R. Metabolism and sodium transfer of mouse ascites tumour cells. J Physiol. 1958 Jan 23;140(1):80–93. doi: 10.1113/jphysiol.1958.sp005917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUDGE G. H. Electrolyte and water metabolism of rabbit kidney slices; effect of metabolic inhibitors. Am J Physiol. 1951 Oct;167(1):206–223. doi: 10.1152/ajplegacy.1951.167.1.206. [DOI] [PubMed] [Google Scholar]
- ROBINSON J. R. Osmoregulation in surviving slices from the kidneys of adult rats. Proc R Soc Lond B Biol Sci. 1950 Oct 13;137(888):378–402. doi: 10.1098/rspb.1950.0048. [DOI] [PubMed] [Google Scholar]
- ROBINSON J. R. The effect of sodium and chloride ions upon swelling of rat kidney slices treated with a mercurial diuretic. J Physiol. 1956 Oct 29;134(1):216–228. doi: 10.1113/jphysiol.1956.sp005638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R., DAVIES R. E. Active transport of water, sodium, potassium and alpha-oxoglutarate by kidney-cortex slices. Biochem J. 1953 Dec;55(5):880–888. doi: 10.1042/bj0550880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R., DAVIES R. E. Relations between metabolism and the rate of turnover of sodium and potassium in guinea pig kidney-cortex slices. Biochem J. 1954 Mar;56(3):445–453. doi: 10.1042/bj0560445. [DOI] [PMC free article] [PubMed] [Google Scholar]